Limits...
Advances in modelling of biomimetic fluid flow at different scales.

Saha SK, Celata GP - Nanoscale Res Lett (2011)

Bottom Line: The biomimetic flow at different scales has been discussed at length.The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized.The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Mechanical Engineering Department, Bengal Engineering and Science University, Shibpur, Howrah, West Bengal 711 103, India. sujoy_k_saha@hotmail.com.

ABSTRACT
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed.

No MeSH data available.


Related in: MedlinePlus

Schematic representation of a molecular region in a hybrid simulation. (From [48]).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211433&req=5

Figure 10: Schematic representation of a molecular region in a hybrid simulation. (From [48]).

Mentions: The development and optimization of the performance of micro and nano fluidic devices requires numerical modelling of fluid flow inside micro and nanochannels. The nature of the phenomena involved in these devices invariably and predominantly has the interfacial interactions because of high surface-to-volume ratio and is characterized by an inherent multiscale nature [48-62]. The traditional continuum models do not capture the flow physics inside the micro and nano scale systems because they neglect the microscopic mechanisms at these scales. The MD is a microscopic model and this can be used where macroscopic constitutive equations and boundary conditions are inadequate. Figure 10[48] shows the schematic representation of a molecular region in a hybrid simulation. The MD are well suited for the study of slip generation in the solid-fluid interface and other surface properties like nanoroughness and wettability and the boundary conditions. However, high computational cost restricts the molecular simulations to their applications to nanoscale systems and time scales below microseconds. This disparity of spatial and temporal scales is overcome in the hybrid atomistic-continuum multiscale frameworks where the molecular description models only a small part of the computational domain, since the physics of this part of the system cannot be represented by the continuum model. The boundary condition is transferred accurately and efficiently between the atomistic and continuum description in the hybrid methods. Since the microscopic description requires more degrees of freedom than the macroscopic one, the transfer of macroscopic information on a molecular simulation becomes all the more a challenging task.


Advances in modelling of biomimetic fluid flow at different scales.

Saha SK, Celata GP - Nanoscale Res Lett (2011)

Schematic representation of a molecular region in a hybrid simulation. (From [48]).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211433&req=5

Figure 10: Schematic representation of a molecular region in a hybrid simulation. (From [48]).
Mentions: The development and optimization of the performance of micro and nano fluidic devices requires numerical modelling of fluid flow inside micro and nanochannels. The nature of the phenomena involved in these devices invariably and predominantly has the interfacial interactions because of high surface-to-volume ratio and is characterized by an inherent multiscale nature [48-62]. The traditional continuum models do not capture the flow physics inside the micro and nano scale systems because they neglect the microscopic mechanisms at these scales. The MD is a microscopic model and this can be used where macroscopic constitutive equations and boundary conditions are inadequate. Figure 10[48] shows the schematic representation of a molecular region in a hybrid simulation. The MD are well suited for the study of slip generation in the solid-fluid interface and other surface properties like nanoroughness and wettability and the boundary conditions. However, high computational cost restricts the molecular simulations to their applications to nanoscale systems and time scales below microseconds. This disparity of spatial and temporal scales is overcome in the hybrid atomistic-continuum multiscale frameworks where the molecular description models only a small part of the computational domain, since the physics of this part of the system cannot be represented by the continuum model. The boundary condition is transferred accurately and efficiently between the atomistic and continuum description in the hybrid methods. Since the microscopic description requires more degrees of freedom than the macroscopic one, the transfer of macroscopic information on a molecular simulation becomes all the more a challenging task.

Bottom Line: The biomimetic flow at different scales has been discussed at length.The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized.The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Mechanical Engineering Department, Bengal Engineering and Science University, Shibpur, Howrah, West Bengal 711 103, India. sujoy_k_saha@hotmail.com.

ABSTRACT
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed.

No MeSH data available.


Related in: MedlinePlus