Limits...
Large-scale Synthesis of β -SiC Nanochains and Their Raman/Photoluminescence Properties

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology.

No MeSH data available.


Room-temperature photoluminescence spectrum of the SiC nanochains.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211428&req=5

Figure 8: Room-temperature photoluminescence spectrum of the SiC nanochains.

Mentions: Figure 8 displays a room-temperature PL spectrum of the as-obtained products. When excited with light from a xenon source (excitation wavelength of 270 nm), the typical nanostructures show emission band centered at 408 nm, which is in accordance with the value of 3C-SiC nanobelts [16] and SiC nanoneedles [36]. Compared with the previously reported luminescence from the aligned SiC NWs, the emission peak is obviously shifted [37]. Similar emission peaks at about 390 nm were also reported for the SiC/SiO2 nanochain heterojunctions, which was attributed to the neutral oxygen vacancy formed at the interface boundary of SiC/SiO2 [26]. In the present work, the SiC nanochains were uniformly wrapped by a thin SiO2 amorphous film. Hence, we proposed that the wide PL peak may be due to the following reasons: altering diameter of the nanostructures, stress at the SiC/SiO2 interface boundary, the size confinement effect and high density of defects including stacking faults within the SiC nanostructures.


Large-scale Synthesis of β -SiC Nanochains and Their Raman/Photoluminescence Properties
Room-temperature photoluminescence spectrum of the SiC nanochains.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211428&req=5

Figure 8: Room-temperature photoluminescence spectrum of the SiC nanochains.
Mentions: Figure 8 displays a room-temperature PL spectrum of the as-obtained products. When excited with light from a xenon source (excitation wavelength of 270 nm), the typical nanostructures show emission band centered at 408 nm, which is in accordance with the value of 3C-SiC nanobelts [16] and SiC nanoneedles [36]. Compared with the previously reported luminescence from the aligned SiC NWs, the emission peak is obviously shifted [37]. Similar emission peaks at about 390 nm were also reported for the SiC/SiO2 nanochain heterojunctions, which was attributed to the neutral oxygen vacancy formed at the interface boundary of SiC/SiO2 [26]. In the present work, the SiC nanochains were uniformly wrapped by a thin SiO2 amorphous film. Hence, we proposed that the wide PL peak may be due to the following reasons: altering diameter of the nanostructures, stress at the SiC/SiO2 interface boundary, the size confinement effect and high density of defects including stacking faults within the SiC nanostructures.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology.

No MeSH data available.