Limits...
Large-scale Synthesis of β -SiC Nanochains and Their Raman/Photoluminescence Properties

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology.

No MeSH data available.


Representative low-magnification (a) and high-magnification (b, c) FESEM images of the nanochains grown on AAO template via CVR approach.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211428&req=5

Figure 3: Representative low-magnification (a) and high-magnification (b, c) FESEM images of the nanochains grown on AAO template via CVR approach.

Mentions: Low-magnification FESEM image (Figure 3a) shows the nanochains grown on the AAO template via CVR approach, which are quite different from the traditional smooth nanowire. High-magnification FESEM image further reveals that the nanostructures in Figure 3b and 3c were the perfect beaded morphology with sphere size of 25–30 nm evenly and connected by the wire of 15–20 nm in diameter. No catalyst particles are attached onto the tips of the as-grown nanochains that are marked by the white circles, so we generally believe the growth process is induced by VS mechanism. In addition, the EDX spectrums (Figure 4) reveal that the AAO template is composed of Al and O elements, the quantitative analysis indicates the atomic ratio of Al and O is approximately 2:3, corresponding to the stoichiometric composition of Al2O3. The nanochains are composed of Si and C, and the molecular ratio of Si/C calculated from the EDX data is about 1:1, corresponding to the stoichiometric composition of SiC. The appearance of Al and O peaks is due to the existence of AAO substrate.


Large-scale Synthesis of β -SiC Nanochains and Their Raman/Photoluminescence Properties
Representative low-magnification (a) and high-magnification (b, c) FESEM images of the nanochains grown on AAO template via CVR approach.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211428&req=5

Figure 3: Representative low-magnification (a) and high-magnification (b, c) FESEM images of the nanochains grown on AAO template via CVR approach.
Mentions: Low-magnification FESEM image (Figure 3a) shows the nanochains grown on the AAO template via CVR approach, which are quite different from the traditional smooth nanowire. High-magnification FESEM image further reveals that the nanostructures in Figure 3b and 3c were the perfect beaded morphology with sphere size of 25–30 nm evenly and connected by the wire of 15–20 nm in diameter. No catalyst particles are attached onto the tips of the as-grown nanochains that are marked by the white circles, so we generally believe the growth process is induced by VS mechanism. In addition, the EDX spectrums (Figure 4) reveal that the AAO template is composed of Al and O elements, the quantitative analysis indicates the atomic ratio of Al and O is approximately 2:3, corresponding to the stoichiometric composition of Al2O3. The nanochains are composed of Si and C, and the molecular ratio of Si/C calculated from the EDX data is about 1:1, corresponding to the stoichiometric composition of SiC. The appearance of Al and O peaks is due to the existence of AAO substrate.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology.

No MeSH data available.