Limits...
A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles.

Auger A, Samuel J, Poncelet O, Raccurt O - Nanoscale Res Lett (2011)

Bottom Line: Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring.Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles.This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.

View Article: PubMed Central - HTML - PubMed

Affiliation: CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN), 17 rue des Martyrs, 38054 Grenoble Cedex 9, France. aurelien.auger@cea.fr.

ABSTRACT
Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm) using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.

No MeSH data available.


Excitation and emission spectra of aqueous solutions of NBA and silica nanoparticles doped with NBA (1d, 2d, 3d and 4d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211415&req=5

Figure 8: Excitation and emission spectra of aqueous solutions of NBA and silica nanoparticles doped with NBA (1d, 2d, 3d and 4d).

Mentions: The synthesis of nanosensors based on silica nanoparticles embedded with a rigid fluorophores called NBA was undertaken. NBA is commonly used as a fluorescent laser dye. An aqueous solution of free-NBA exhibited an excitation peak at 634 nm and an emission peak at 677 nm as illustrated in Figure 8.


A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles.

Auger A, Samuel J, Poncelet O, Raccurt O - Nanoscale Res Lett (2011)

Excitation and emission spectra of aqueous solutions of NBA and silica nanoparticles doped with NBA (1d, 2d, 3d and 4d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211415&req=5

Figure 8: Excitation and emission spectra of aqueous solutions of NBA and silica nanoparticles doped with NBA (1d, 2d, 3d and 4d).
Mentions: The synthesis of nanosensors based on silica nanoparticles embedded with a rigid fluorophores called NBA was undertaken. NBA is commonly used as a fluorescent laser dye. An aqueous solution of free-NBA exhibited an excitation peak at 634 nm and an emission peak at 677 nm as illustrated in Figure 8.

Bottom Line: Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring.Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles.This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.

View Article: PubMed Central - HTML - PubMed

Affiliation: CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN), 17 rue des Martyrs, 38054 Grenoble Cedex 9, France. aurelien.auger@cea.fr.

ABSTRACT
Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm) using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.

No MeSH data available.