Limits...
Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods.

Zhang P, Li X, Zhao Q, Liu S - Nanoscale Res Lett (2011)

Bottom Line: The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm.They exhibited strong absorption below 500 nm with the threshold edges around 700 nm.A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China. xyli@dlut.edu.cn.

ABSTRACT
Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

No MeSH data available.


XPS spectra of the ZnMn2O4 nanorods obtained by calcining the precursor at 650°C: (a) survey of the sample; (b) Mn 2p; (c) Zn 2p; and (d) O 1s.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211411&req=5

Figure 5: XPS spectra of the ZnMn2O4 nanorods obtained by calcining the precursor at 650°C: (a) survey of the sample; (b) Mn 2p; (c) Zn 2p; and (d) O 1s.

Mentions: In ZnMn2O4, Mn and Zn atoms exist in the samples with more than one chemical state (A-sites or B-sites), bringing about several contributions with different binding energies in the XPS. Therefore, XPS was employed to reveal the surface chemical compositions of the nanocrystalline ZnMn2O4 superstructures obtained from the calcinations of the precursor at 650°C (Figure 5). Figure 5a shows the survey spectra of the nanocrystalline ZnMn2O4. Elements of Zn, Mn, O, and adventitious C existed in the ZnMn2O4. The carbonate species adsorbed on the surface have appeared from the calibration for XPS instrument itself. As shown in the spectrum in Figure 5b, the peaks of 654.4 and 642.4 eV can be attributed to Mn 2p1/2 and Mn 2p3/2, respectively. Figure 5c shows the Zn 2p peaks at binding energies of 1044.8 and 1021.6 eV. This reveals the oxidation state of Mn3+ in the sample. Meanwhile, O 1s spectra of ZnMn2O4 were also recorded (Figure 5d). The broad peak of O 1s can be fitted by two peaks at binding energies of 531.8 and 530.2 eV. The stronger peak at 530.2 eV is ascribed to the characteristics of oxygen in metal oxide, and the other peak at around 531.8 eV suggests the presence of other components, such as OH, H2O, and carbonate species adsorbed on the surface. In addition, XPS analysis confirms that the ratio of Zn to Mn in the sample is very close to 1:2, which is in good agreement with the formula of ZnMn2O4.


Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods.

Zhang P, Li X, Zhao Q, Liu S - Nanoscale Res Lett (2011)

XPS spectra of the ZnMn2O4 nanorods obtained by calcining the precursor at 650°C: (a) survey of the sample; (b) Mn 2p; (c) Zn 2p; and (d) O 1s.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211411&req=5

Figure 5: XPS spectra of the ZnMn2O4 nanorods obtained by calcining the precursor at 650°C: (a) survey of the sample; (b) Mn 2p; (c) Zn 2p; and (d) O 1s.
Mentions: In ZnMn2O4, Mn and Zn atoms exist in the samples with more than one chemical state (A-sites or B-sites), bringing about several contributions with different binding energies in the XPS. Therefore, XPS was employed to reveal the surface chemical compositions of the nanocrystalline ZnMn2O4 superstructures obtained from the calcinations of the precursor at 650°C (Figure 5). Figure 5a shows the survey spectra of the nanocrystalline ZnMn2O4. Elements of Zn, Mn, O, and adventitious C existed in the ZnMn2O4. The carbonate species adsorbed on the surface have appeared from the calibration for XPS instrument itself. As shown in the spectrum in Figure 5b, the peaks of 654.4 and 642.4 eV can be attributed to Mn 2p1/2 and Mn 2p3/2, respectively. Figure 5c shows the Zn 2p peaks at binding energies of 1044.8 and 1021.6 eV. This reveals the oxidation state of Mn3+ in the sample. Meanwhile, O 1s spectra of ZnMn2O4 were also recorded (Figure 5d). The broad peak of O 1s can be fitted by two peaks at binding energies of 531.8 and 530.2 eV. The stronger peak at 530.2 eV is ascribed to the characteristics of oxygen in metal oxide, and the other peak at around 531.8 eV suggests the presence of other components, such as OH, H2O, and carbonate species adsorbed on the surface. In addition, XPS analysis confirms that the ratio of Zn to Mn in the sample is very close to 1:2, which is in good agreement with the formula of ZnMn2O4.

Bottom Line: The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm.They exhibited strong absorption below 500 nm with the threshold edges around 700 nm.A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China. xyli@dlut.edu.cn.

ABSTRACT
Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

No MeSH data available.