Limits...
Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods.

Zhang P, Li X, Zhao Q, Liu S - Nanoscale Res Lett (2011)

Bottom Line: The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm.They exhibited strong absorption below 500 nm with the threshold edges around 700 nm.A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China. xyli@dlut.edu.cn.

ABSTRACT
Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

No MeSH data available.


XRD patterns of the ZnMn2O4 nanorods at different calcined temperatures and as per the standard card about ZnMn2O4 (JCPDS file No.24-1133). Asterisks, α-MnO2; inverted triangle, ZnO; filled circle, ZnMn2O4.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211411&req=5

Figure 1: XRD patterns of the ZnMn2O4 nanorods at different calcined temperatures and as per the standard card about ZnMn2O4 (JCPDS file No.24-1133). Asterisks, α-MnO2; inverted triangle, ZnO; filled circle, ZnMn2O4.

Mentions: The crystallinities and phase purities of the ZnMn2O4 nanorods calcined were examined by powder XRD. Figure 1 shows the XRD patterns of the samples after calcination at different temperatures and as per the standard data card about the ZnMn2O4. After calcination at 650°C, all the XRD peaks of the calcined samples could be indexed to cubic ZnMn2O4 with spinel structure (JCPDS file No.24-1133), where the diffraction peaks at 2θ values of 29.3°, 33.03°, 36.3°, 59.01°, 60.77°, and 65.1° are ascribed to the reflection of (112), (103), (211), (321), (224), and (400) planes of the spinel ZnMn2O4, respectively. No peaks from other phases are detected, indicating high purity of the products. However, in the products which were calcined at 500°C, the diffraction peaks of α-MnO2 and ZnO could still be seen clearly, implying that the precursor was not converted into spinel ZnMn2O4 completely even at such a calcination temperature. As for the sample treated at 800°C, two peaks of α-MnO2 preferential growth along (110) and (220) crystal faces at the surface of ZnMn2O4 nanorods were detected again because of partial decomposition of ZnMn2O4. Meanwhile, the peaks of α-MnO2 and ZnO could also be seen unambiguously when the precursors were calcined at 550 and 600°C (see Figure S1 in Additional file 1). These phenomena indicate that the formation of ZnMn2O4 began at the calcination temperature of about 650°C. On increasing the calcination temperature from 500 to 800°C, the peak widths of the ZnMn2O4 nanorods become narrower, and the relative intensities of the characteristic peaks increase gradually, which implies that the spinel ZnMn2O4 crystallites were growing and transforming from the disordered to a more ordered structure [23].


Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods.

Zhang P, Li X, Zhao Q, Liu S - Nanoscale Res Lett (2011)

XRD patterns of the ZnMn2O4 nanorods at different calcined temperatures and as per the standard card about ZnMn2O4 (JCPDS file No.24-1133). Asterisks, α-MnO2; inverted triangle, ZnO; filled circle, ZnMn2O4.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211411&req=5

Figure 1: XRD patterns of the ZnMn2O4 nanorods at different calcined temperatures and as per the standard card about ZnMn2O4 (JCPDS file No.24-1133). Asterisks, α-MnO2; inverted triangle, ZnO; filled circle, ZnMn2O4.
Mentions: The crystallinities and phase purities of the ZnMn2O4 nanorods calcined were examined by powder XRD. Figure 1 shows the XRD patterns of the samples after calcination at different temperatures and as per the standard data card about the ZnMn2O4. After calcination at 650°C, all the XRD peaks of the calcined samples could be indexed to cubic ZnMn2O4 with spinel structure (JCPDS file No.24-1133), where the diffraction peaks at 2θ values of 29.3°, 33.03°, 36.3°, 59.01°, 60.77°, and 65.1° are ascribed to the reflection of (112), (103), (211), (321), (224), and (400) planes of the spinel ZnMn2O4, respectively. No peaks from other phases are detected, indicating high purity of the products. However, in the products which were calcined at 500°C, the diffraction peaks of α-MnO2 and ZnO could still be seen clearly, implying that the precursor was not converted into spinel ZnMn2O4 completely even at such a calcination temperature. As for the sample treated at 800°C, two peaks of α-MnO2 preferential growth along (110) and (220) crystal faces at the surface of ZnMn2O4 nanorods were detected again because of partial decomposition of ZnMn2O4. Meanwhile, the peaks of α-MnO2 and ZnO could also be seen unambiguously when the precursors were calcined at 550 and 600°C (see Figure S1 in Additional file 1). These phenomena indicate that the formation of ZnMn2O4 began at the calcination temperature of about 650°C. On increasing the calcination temperature from 500 to 800°C, the peak widths of the ZnMn2O4 nanorods become narrower, and the relative intensities of the characteristic peaks increase gradually, which implies that the spinel ZnMn2O4 crystallites were growing and transforming from the disordered to a more ordered structure [23].

Bottom Line: The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm.They exhibited strong absorption below 500 nm with the threshold edges around 700 nm.A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China. xyli@dlut.edu.cn.

ABSTRACT
Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.

No MeSH data available.