Limits...
Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres) can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd) with desirable functional properties.

No MeSH data available.


TEM images of silver nanoparticles (triangles plus spheres) obtained in the reaction end at different temperatures: a 17; b 23; c 28; d 32; e 43; and f 55°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211407&req=5

Figure 1: TEM images of silver nanoparticles (triangles plus spheres) obtained in the reaction end at different temperatures: a 17; b 23; c 28; d 32; e 43; and f 55°C.

Mentions: Temperature is one of the key influence factors in chemical reactions. In order to investigate the influence of heating or cooling process in the synthesis of silver nanoplates, the solution temperature was cooled by ice-bath to ~0°C or heated from 17 to 23, 28, 32, 38, 43, 50, and 55°C, respectively. Other parameters were kept constant. The change of pH is estimated to be ΔpH ≤ 0.3 in the solution (pH ~ 5) when adjusting the molar ratio of [cit]/[Ag+] to 40 [53]. Figure 1 shows TEM images that silver nanoparticles can be formed in the proposed system at different temperatures, unfortunately, the triangular and spherical particles co-exist (Figure 1a–f).


Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach
TEM images of silver nanoparticles (triangles plus spheres) obtained in the reaction end at different temperatures: a 17; b 23; c 28; d 32; e 43; and f 55°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211407&req=5

Figure 1: TEM images of silver nanoparticles (triangles plus spheres) obtained in the reaction end at different temperatures: a 17; b 23; c 28; d 32; e 43; and f 55°C.
Mentions: Temperature is one of the key influence factors in chemical reactions. In order to investigate the influence of heating or cooling process in the synthesis of silver nanoplates, the solution temperature was cooled by ice-bath to ~0°C or heated from 17 to 23, 28, 32, 38, 43, 50, and 55°C, respectively. Other parameters were kept constant. The change of pH is estimated to be ΔpH ≤ 0.3 in the solution (pH ~ 5) when adjusting the molar ratio of [cit]/[Ag+] to 40 [53]. Figure 1 shows TEM images that silver nanoparticles can be formed in the proposed system at different temperatures, unfortunately, the triangular and spherical particles co-exist (Figure 1a–f).

View Article: PubMed Central - HTML - PubMed

ABSTRACT

This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres) can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd) with desirable functional properties.

No MeSH data available.