Limits...
Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer.

Parametthanuwat T, Rittidech S, Pattiya A, Ding Y, Witharana S - Nanoscale Res Lett (2011)

Bottom Line: The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min.The operating temperatures were 60, 70, and 80°C.It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study.

View Article: PubMed Central - HTML - PubMed

Affiliation: Heat-Pipe and Thermal Tools Design Research Unit (HTDR), Division of Mechanical Engineering, Faculty of Engineering, Mahasarakham University, Thailand. s_rittidej@hotmail.com.

ABSTRACT
This article reports a recent study on the application of a two-phase closed thermosyphon (TPCT) in a thermosyphon for economizer (TPEC). The TPEC had three sections of equal size; the evaporator, the adiabatic section, and the condenser, of 250 mm × 250 mm × 250 mm (W × L × H). The TPCT was a steel tube of 12.7-mm ID. The filling ratios chosen to study were 30, 50, and 80% with respect to the evaporator length. The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min. Five working fluids investigated were: water, water-based silver nanofluid with silver concentration 0.5 w/v%, and the nanofluid (NF) mixed with 0.5, 1, and 1.5 w/v% of oleic acid (OA). The operating temperatures were 60, 70, and 80°C. Experimental data showed that the TPEC gave the highest heat flux of about 25 kW/m2 and the highest effectiveness of about 0.3 at a filling ratio of 50%, with the nanofluid containing 1 w/v% of OA. It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study. Moreover, the presence of OA had clearly contributed to raise the effectiveness of the nanofluid.

No MeSH data available.


Related in: MedlinePlus

Schematic of the two-phase closed thermosyphon.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211402&req=5

Figure 1: Schematic of the two-phase closed thermosyphon.

Mentions: Two-phase closed thermosyphon (TPCT) as illustrated in Figure 1 is essentially a gravity-assisted wickless heat pipe, which utilizes the heat of evaporation and condensation of the working fluid. Contrary to the conventional heat pipe that uses the capillary force to return the liquid to evaporator, the TPCT uses gravity to return the condensate. Since the evaporator of a TPCT is located in the lowest position, the gravitational force will support the capillary force [1-3]. The TPCT has a number of advantages such as simple structure, very small thermal resistance, high efficiency, and low manufacturing costs. It has, therefore, been widely used in various applications such as in industrial heat recovery, electronic component cooling, turbine blade cooling, and solar heating systems [4-6]. The TPCT could be modified to suit many more applications such as heat exchangers and economizers. The first successful design of economizer was used to increase efficiency of boilers for stationary steam engines. It consisted of an array of vertical cast iron tubes connected to two tanks of water above and below, in-between which the exhaust gases from the boilers passed.


Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer.

Parametthanuwat T, Rittidech S, Pattiya A, Ding Y, Witharana S - Nanoscale Res Lett (2011)

Schematic of the two-phase closed thermosyphon.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211402&req=5

Figure 1: Schematic of the two-phase closed thermosyphon.
Mentions: Two-phase closed thermosyphon (TPCT) as illustrated in Figure 1 is essentially a gravity-assisted wickless heat pipe, which utilizes the heat of evaporation and condensation of the working fluid. Contrary to the conventional heat pipe that uses the capillary force to return the liquid to evaporator, the TPCT uses gravity to return the condensate. Since the evaporator of a TPCT is located in the lowest position, the gravitational force will support the capillary force [1-3]. The TPCT has a number of advantages such as simple structure, very small thermal resistance, high efficiency, and low manufacturing costs. It has, therefore, been widely used in various applications such as in industrial heat recovery, electronic component cooling, turbine blade cooling, and solar heating systems [4-6]. The TPCT could be modified to suit many more applications such as heat exchangers and economizers. The first successful design of economizer was used to increase efficiency of boilers for stationary steam engines. It consisted of an array of vertical cast iron tubes connected to two tanks of water above and below, in-between which the exhaust gases from the boilers passed.

Bottom Line: The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min.The operating temperatures were 60, 70, and 80°C.It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study.

View Article: PubMed Central - HTML - PubMed

Affiliation: Heat-Pipe and Thermal Tools Design Research Unit (HTDR), Division of Mechanical Engineering, Faculty of Engineering, Mahasarakham University, Thailand. s_rittidej@hotmail.com.

ABSTRACT
This article reports a recent study on the application of a two-phase closed thermosyphon (TPCT) in a thermosyphon for economizer (TPEC). The TPEC had three sections of equal size; the evaporator, the adiabatic section, and the condenser, of 250 mm × 250 mm × 250 mm (W × L × H). The TPCT was a steel tube of 12.7-mm ID. The filling ratios chosen to study were 30, 50, and 80% with respect to the evaporator length. The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min. Five working fluids investigated were: water, water-based silver nanofluid with silver concentration 0.5 w/v%, and the nanofluid (NF) mixed with 0.5, 1, and 1.5 w/v% of oleic acid (OA). The operating temperatures were 60, 70, and 80°C. Experimental data showed that the TPEC gave the highest heat flux of about 25 kW/m2 and the highest effectiveness of about 0.3 at a filling ratio of 50%, with the nanofluid containing 1 w/v% of OA. It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study. Moreover, the presence of OA had clearly contributed to raise the effectiveness of the nanofluid.

No MeSH data available.


Related in: MedlinePlus