Limits...
Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions.

Yan X, Ge X, Cui S - Nanoscale Res Lett (2011)

Bottom Line: Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions.The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt.A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. xiuling1212@gmail.com.

ABSTRACT
Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition.

No MeSH data available.


Related in: MedlinePlus

Prolonged CV curves of NPG-Pt 64 electrode in PBS containing10 mM glucose, scan rate: 50 mV s-1. The currents were normalized to the geometrical areas.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211400&req=5

Figure 5: Prolonged CV curves of NPG-Pt 64 electrode in PBS containing10 mM glucose, scan rate: 50 mV s-1. The currents were normalized to the geometrical areas.

Mentions: In order to gain further insight into the surface structure effect of NPG-Pt on catalytic performance in glucose oxidation, the prolonged CV tests up to 800 cycles were conducted on NPG-Pt 64 sample. In this electrochemical process, the surface composite and structure would be substantially changed by the repeated redox of the surface metal. This structure change was also found to strongly affect the catalytic properties of NPG-Pt, as shown in Figure 5. While the peaks A1 and A3 gradually decrease with the CV cycles, peak A2 obviously increases in intensity and the onset potential also lightly shifts to a negative value. According to the above discussion, the loss of active Pt surface, resulting from the surface Pt alloying with the NPG substrate during the CV process, would be responsible for the corresponding peak decrease for A1 and A3. Meanwhile, the peak A2 expansion suggests that the new surface from CV process is more active for the intermediate species. This is not surprised since Au is active for glucose oxidation at this potential in PBS [27]. Therefore, we could improve the catalytic performance of NPG-Pt by tailoring the surface structure to maintain the catalytic activity at low potential and enhance the ability of oxidizing the adsorbed intermediate species (because these intermediate can hinder the glucose adsorption on Pt surface).


Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions.

Yan X, Ge X, Cui S - Nanoscale Res Lett (2011)

Prolonged CV curves of NPG-Pt 64 electrode in PBS containing10 mM glucose, scan rate: 50 mV s-1. The currents were normalized to the geometrical areas.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211400&req=5

Figure 5: Prolonged CV curves of NPG-Pt 64 electrode in PBS containing10 mM glucose, scan rate: 50 mV s-1. The currents were normalized to the geometrical areas.
Mentions: In order to gain further insight into the surface structure effect of NPG-Pt on catalytic performance in glucose oxidation, the prolonged CV tests up to 800 cycles were conducted on NPG-Pt 64 sample. In this electrochemical process, the surface composite and structure would be substantially changed by the repeated redox of the surface metal. This structure change was also found to strongly affect the catalytic properties of NPG-Pt, as shown in Figure 5. While the peaks A1 and A3 gradually decrease with the CV cycles, peak A2 obviously increases in intensity and the onset potential also lightly shifts to a negative value. According to the above discussion, the loss of active Pt surface, resulting from the surface Pt alloying with the NPG substrate during the CV process, would be responsible for the corresponding peak decrease for A1 and A3. Meanwhile, the peak A2 expansion suggests that the new surface from CV process is more active for the intermediate species. This is not surprised since Au is active for glucose oxidation at this potential in PBS [27]. Therefore, we could improve the catalytic performance of NPG-Pt by tailoring the surface structure to maintain the catalytic activity at low potential and enhance the ability of oxidizing the adsorbed intermediate species (because these intermediate can hinder the glucose adsorption on Pt surface).

Bottom Line: Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions.The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt.A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. xiuling1212@gmail.com.

ABSTRACT
Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition.

No MeSH data available.


Related in: MedlinePlus