Limits...
Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions.

Yan X, Ge X, Cui S - Nanoscale Res Lett (2011)

Bottom Line: Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions.The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt.A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. xiuling1212@gmail.com.

ABSTRACT
Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition.

No MeSH data available.


Related in: MedlinePlus

XRD patterns for NPG, NPG-Pt 8 and NPG-Pt 64 samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211400&req=5

Figure 2: XRD patterns for NPG, NPG-Pt 8 and NPG-Pt 64 samples.

Mentions: XRD was employed to investigate the crystalline structure of NPG-Pt. Figure 2 shows XRD patterns from NPG and NPG-Pt samples which nearly exhibit the same patterns. The diffraction peaks at 2θ = 38.4°, 44.5° can be ascribed to the (111), (200) planes of face-centered cubic Au crystals respectively, with a lightly positive shift relative to standard pattern. This common positive shift of diffraction peaks are believed to result from the strain in the nanoporous structure [26]. Interestingly, the (200) peak exhibits a much higher intensity than the theoretical value and even exceeds the (111) peak, while (220) peak is nearly invisible in the patterns. These behaviors suggest that Pt plating does not affect the texture of the NPG membranes. Pt surface layer would not be able to exhibit its distinct diffractions due to its extremely low existing amount.


Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions.

Yan X, Ge X, Cui S - Nanoscale Res Lett (2011)

XRD patterns for NPG, NPG-Pt 8 and NPG-Pt 64 samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211400&req=5

Figure 2: XRD patterns for NPG, NPG-Pt 8 and NPG-Pt 64 samples.
Mentions: XRD was employed to investigate the crystalline structure of NPG-Pt. Figure 2 shows XRD patterns from NPG and NPG-Pt samples which nearly exhibit the same patterns. The diffraction peaks at 2θ = 38.4°, 44.5° can be ascribed to the (111), (200) planes of face-centered cubic Au crystals respectively, with a lightly positive shift relative to standard pattern. This common positive shift of diffraction peaks are believed to result from the strain in the nanoporous structure [26]. Interestingly, the (200) peak exhibits a much higher intensity than the theoretical value and even exceeds the (111) peak, while (220) peak is nearly invisible in the patterns. These behaviors suggest that Pt plating does not affect the texture of the NPG membranes. Pt surface layer would not be able to exhibit its distinct diffractions due to its extremely low existing amount.

Bottom Line: Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions.The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt.A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. xiuling1212@gmail.com.

ABSTRACT
Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition.

No MeSH data available.


Related in: MedlinePlus