Limits...
Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix.

Geng H, Song H, Qi J, Cui D - Nanoscale Res Lett (2011)

Bottom Line: We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system.Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach.In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Bio-Nano Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China. songhua@sjtu.edu.cn.

ABSTRACT
We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

No MeSH data available.


Related in: MedlinePlus

In vitro cumulative release of VEGF from PLGA NPs in PBS at pH 7.4 and 37°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211399&req=5

Figure 6: In vitro cumulative release of VEGF from PLGA NPs in PBS at pH 7.4 and 37°C.

Mentions: The in vitro release kinetics was performed in PBS (pH 7.4) at 37°C for 60 days as reported in Figure 6. In this study, VEGF released from NPs within the first 2 days (burst effect) was 30 ± 3%, followed by a phase of sustained release with almost 75% of VEGF being released within 60 days. The VEGF release from NPs-F127 gel embedded in full-thickness acellular porcine bladder matrix (Figure 4c, d) was slower than that from VEGF-NPs (almost 60% of VEGF being released within 60 days). The burst effect was decreased below 15 ± 2%, which might be due to longer diffusion pathways of VEGF in porcine bladder acellular matrix. In addition, sustained release of VEGF from simple F127 gel was not remarkable compared with the two groups described above.


Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix.

Geng H, Song H, Qi J, Cui D - Nanoscale Res Lett (2011)

In vitro cumulative release of VEGF from PLGA NPs in PBS at pH 7.4 and 37°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211399&req=5

Figure 6: In vitro cumulative release of VEGF from PLGA NPs in PBS at pH 7.4 and 37°C.
Mentions: The in vitro release kinetics was performed in PBS (pH 7.4) at 37°C for 60 days as reported in Figure 6. In this study, VEGF released from NPs within the first 2 days (burst effect) was 30 ± 3%, followed by a phase of sustained release with almost 75% of VEGF being released within 60 days. The VEGF release from NPs-F127 gel embedded in full-thickness acellular porcine bladder matrix (Figure 4c, d) was slower than that from VEGF-NPs (almost 60% of VEGF being released within 60 days). The burst effect was decreased below 15 ± 2%, which might be due to longer diffusion pathways of VEGF in porcine bladder acellular matrix. In addition, sustained release of VEGF from simple F127 gel was not remarkable compared with the two groups described above.

Bottom Line: We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system.Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach.In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Bio-Nano Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China. songhua@sjtu.edu.cn.

ABSTRACT
We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

No MeSH data available.


Related in: MedlinePlus