Limits...
Friction-induced nanofabrication method to produce protrusive nanostructures on quartz.

Song C, Li X, Yu B, Dong H, Qian L, Zhou Z - Nanoscale Res Lett (2011)

Bottom Line: The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load.Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions.Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution.

View Article: PubMed Central - HTML - PubMed

Affiliation: Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, People's Republic of China. linmao@swjtu.edu.cn.

ABSTRACT
In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication.

No MeSH data available.


Related in: MedlinePlus

XTEM and SAED observation of nanolines on quartz. (a) XTEM image showing the cross-sectional structure of two typical nanolines formed on quartz surface, (b) the SAED pattern from the original area and (c) the SAED pattern from the deformed area.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211397&req=5

Figure 6: XTEM and SAED observation of nanolines on quartz. (a) XTEM image showing the cross-sectional structure of two typical nanolines formed on quartz surface, (b) the SAED pattern from the original area and (c) the SAED pattern from the deformed area.

Mentions: To further understand the mechanism of the formation of the protrusive nanostructures, the microstructure of nanolines of about 4 nm in height was analysed by the cross-sectional transmission electron microscope (XTEM). Detailed TEM observations have revealed that no crystal structure change occurred under the protrusions during the repeated line-scratches; however, high density dislocations were found within the semicycle-shaped zone with a slightly dark contrast below protrusions (Figure 6a). This indicates that the lattice has been distorted and dislocations have been formed during the friction-induced fabrication. Selected-area electron diffraction (SAED) patterns from the original unaffected area (Figure 6b) and the deformed area (Figure 6c) showed the same zone SiO2 pattern with the plane parallel to the surface, as shown in Figure 6b. This indicates that the deformed area has the same single-crystal structure as that of original quartz. Unlike the friction-induced hillocks on silicon [19,20], no amorphous layer was observed under the friction-induced hillocks on quartz. The lattice distortion induced by the mechanical interaction may have played an important role in the formation of the protrusive nanostructures on quartz surfaces. However, the detail generation mechanism of the protrusion of material should be further investigated.


Friction-induced nanofabrication method to produce protrusive nanostructures on quartz.

Song C, Li X, Yu B, Dong H, Qian L, Zhou Z - Nanoscale Res Lett (2011)

XTEM and SAED observation of nanolines on quartz. (a) XTEM image showing the cross-sectional structure of two typical nanolines formed on quartz surface, (b) the SAED pattern from the original area and (c) the SAED pattern from the deformed area.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211397&req=5

Figure 6: XTEM and SAED observation of nanolines on quartz. (a) XTEM image showing the cross-sectional structure of two typical nanolines formed on quartz surface, (b) the SAED pattern from the original area and (c) the SAED pattern from the deformed area.
Mentions: To further understand the mechanism of the formation of the protrusive nanostructures, the microstructure of nanolines of about 4 nm in height was analysed by the cross-sectional transmission electron microscope (XTEM). Detailed TEM observations have revealed that no crystal structure change occurred under the protrusions during the repeated line-scratches; however, high density dislocations were found within the semicycle-shaped zone with a slightly dark contrast below protrusions (Figure 6a). This indicates that the lattice has been distorted and dislocations have been formed during the friction-induced fabrication. Selected-area electron diffraction (SAED) patterns from the original unaffected area (Figure 6b) and the deformed area (Figure 6c) showed the same zone SiO2 pattern with the plane parallel to the surface, as shown in Figure 6b. This indicates that the deformed area has the same single-crystal structure as that of original quartz. Unlike the friction-induced hillocks on silicon [19,20], no amorphous layer was observed under the friction-induced hillocks on quartz. The lattice distortion induced by the mechanical interaction may have played an important role in the formation of the protrusive nanostructures on quartz surfaces. However, the detail generation mechanism of the protrusion of material should be further investigated.

Bottom Line: The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load.Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions.Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution.

View Article: PubMed Central - HTML - PubMed

Affiliation: Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, People's Republic of China. linmao@swjtu.edu.cn.

ABSTRACT
In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication.

No MeSH data available.


Related in: MedlinePlus