Limits...
Friction-induced nanofabrication method to produce protrusive nanostructures on quartz.

Song C, Li X, Yu B, Dong H, Qian L, Zhou Z - Nanoscale Res Lett (2011)

Bottom Line: The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load.Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions.Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution.

View Article: PubMed Central - HTML - PubMed

Affiliation: Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, People's Republic of China. linmao@swjtu.edu.cn.

ABSTRACT
In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication.

No MeSH data available.


Related in: MedlinePlus

Fabrication of various nanostructures on quartz surface. (a) nanodot created by line-scratch at Fn = 6 μN, N = 100 and D = 80 nm, (b) surface mesa generated by scanning-scratch at Fn = 6 μN and N = 4 and (c) nanoletters produced by a dull diamond tip with R = 500 nm at Fn = 30 μN and N = 100.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211397&req=5

Figure 4: Fabrication of various nanostructures on quartz surface. (a) nanodot created by line-scratch at Fn = 6 μN, N = 100 and D = 80 nm, (b) surface mesa generated by scanning-scratch at Fn = 6 μN and N = 4 and (c) nanoletters produced by a dull diamond tip with R = 500 nm at Fn = 30 μN and N = 100.

Mentions: The friction-induced method can easily fabricate various nanostructures on quartz surfaces. For example, nanodots can be produced by line-scratching with short scratch displacement amplitude D. As shown in Figure 4a, the nanodot with a height of 2.5 nm and a diameter of 200 nm was fabricated by line-scratching at D = 80 nm. Surface isolated mesas can be created by scanning-scratch. In Figure 4b, when the scan area was set as 3 μm × 3 μm, a surface mesa with a height of 2.9 nm was made on a quartz surface under Fn = 6 μN and N = 4. Surface patterned structures can also be fabricated by programming the tip trace in terms of the demanded pattern. In Figure 4c, the word 'NANO' on a quartz surface was written by the friction-induced fabrication process through connecting the nanolines together. The height of the letter is 1.5 nm and the width is about 300 nm.


Friction-induced nanofabrication method to produce protrusive nanostructures on quartz.

Song C, Li X, Yu B, Dong H, Qian L, Zhou Z - Nanoscale Res Lett (2011)

Fabrication of various nanostructures on quartz surface. (a) nanodot created by line-scratch at Fn = 6 μN, N = 100 and D = 80 nm, (b) surface mesa generated by scanning-scratch at Fn = 6 μN and N = 4 and (c) nanoletters produced by a dull diamond tip with R = 500 nm at Fn = 30 μN and N = 100.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211397&req=5

Figure 4: Fabrication of various nanostructures on quartz surface. (a) nanodot created by line-scratch at Fn = 6 μN, N = 100 and D = 80 nm, (b) surface mesa generated by scanning-scratch at Fn = 6 μN and N = 4 and (c) nanoletters produced by a dull diamond tip with R = 500 nm at Fn = 30 μN and N = 100.
Mentions: The friction-induced method can easily fabricate various nanostructures on quartz surfaces. For example, nanodots can be produced by line-scratching with short scratch displacement amplitude D. As shown in Figure 4a, the nanodot with a height of 2.5 nm and a diameter of 200 nm was fabricated by line-scratching at D = 80 nm. Surface isolated mesas can be created by scanning-scratch. In Figure 4b, when the scan area was set as 3 μm × 3 μm, a surface mesa with a height of 2.9 nm was made on a quartz surface under Fn = 6 μN and N = 4. Surface patterned structures can also be fabricated by programming the tip trace in terms of the demanded pattern. In Figure 4c, the word 'NANO' on a quartz surface was written by the friction-induced fabrication process through connecting the nanolines together. The height of the letter is 1.5 nm and the width is about 300 nm.

Bottom Line: The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load.Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions.Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution.

View Article: PubMed Central - HTML - PubMed

Affiliation: Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, People's Republic of China. linmao@swjtu.edu.cn.

ABSTRACT
In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication.

No MeSH data available.


Related in: MedlinePlus