Limits...
An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles.

Rivero PJ, Urrutia A, Goicoechea J, Zamarreño CR, Arregui FJ, Matías IR - Nanoscale Res Lett (2011)

Bottom Line: Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films.Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties.It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

View Article: PubMed Central - HTML - PubMed

Affiliation: Nanostructured Optical Devices Laboratory, Electric and Electronic Engineering Department, Public University of Navarra, Edif, Los Tejos, Campus Arrosadía, 31006, Pamplona, Spain. pedrojose.rivero@unavarra.es.

ABSTRACT
In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

No MeSH data available.


Related in: MedlinePlus

Bacteria growth. Bacteria growth on culture plates after 24 h in the (a) reference substrate, (b) coated substrate. The coated area is clearly visible, as far as it inhibits completely the bacteria growth.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211391&req=5

Figure 6: Bacteria growth. Bacteria growth on culture plates after 24 h in the (a) reference substrate, (b) coated substrate. The coated area is clearly visible, as far as it inhibits completely the bacteria growth.

Mentions: Finally the antibacterial activities against Lactobacillus plantarum of the coatings were characterized using the method described in the "Experimental section". Figure 6 shows the results of two samples placed on agar slabs after 24 h. The first one (Figure 6a) shows a reference substrate (a bare glass slide) and it is clearly seen that a high number of Lactobacillus plantarum colonies grown up randomly throughout the whole agar slab. The second sample (Figure 6b) has a silver-loaded hybrid coated area where there is no growth of colonies. The behavior is different in the uncoated area of the substrate and in the rest of the agar slab where the growth of colonies is high as in the reference sample (Figure 6a).


An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles.

Rivero PJ, Urrutia A, Goicoechea J, Zamarreño CR, Arregui FJ, Matías IR - Nanoscale Res Lett (2011)

Bacteria growth. Bacteria growth on culture plates after 24 h in the (a) reference substrate, (b) coated substrate. The coated area is clearly visible, as far as it inhibits completely the bacteria growth.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211391&req=5

Figure 6: Bacteria growth. Bacteria growth on culture plates after 24 h in the (a) reference substrate, (b) coated substrate. The coated area is clearly visible, as far as it inhibits completely the bacteria growth.
Mentions: Finally the antibacterial activities against Lactobacillus plantarum of the coatings were characterized using the method described in the "Experimental section". Figure 6 shows the results of two samples placed on agar slabs after 24 h. The first one (Figure 6a) shows a reference substrate (a bare glass slide) and it is clearly seen that a high number of Lactobacillus plantarum colonies grown up randomly throughout the whole agar slab. The second sample (Figure 6b) has a silver-loaded hybrid coated area where there is no growth of colonies. The behavior is different in the uncoated area of the substrate and in the rest of the agar slab where the growth of colonies is high as in the reference sample (Figure 6a).

Bottom Line: Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films.Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties.It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

View Article: PubMed Central - HTML - PubMed

Affiliation: Nanostructured Optical Devices Laboratory, Electric and Electronic Engineering Department, Public University of Navarra, Edif, Los Tejos, Campus Arrosadía, 31006, Pamplona, Spain. pedrojose.rivero@unavarra.es.

ABSTRACT
In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

No MeSH data available.


Related in: MedlinePlus