Limits...
Synthesis of carbon nanotubes with and without catalyst particles.

Rümmeli MH, Bachmatiuk A, Börrnert F, Schäffel F, Ibrahim I, Cendrowski K, Simha-Martynkova G, Plachá D, Borowiak-Palen E, Cuniberti G, Büchner B - Nanoscale Res Lett (2011)

Bottom Line: More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes.All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated.These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis.

View Article: PubMed Central - HTML - PubMed

Affiliation: IFW Dresden, P,O, Box 270116, 01069 Dresden, Germany. m.ruemmeli@ifw-dresden.de.

ABSTRACT
The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis.

No MeSH data available.


Related in: MedlinePlus

Transmission electron micrographs of SWNT bundles (left panel) and an individual SWNT (right panel) synthesized from cobalt by Bethune et al. Reprinted with permission from Bethune et al. [5].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211370&req=5

Figure 1: Transmission electron micrographs of SWNT bundles (left panel) and an individual SWNT (right panel) synthesized from cobalt by Bethune et al. Reprinted with permission from Bethune et al. [5].

Mentions: The current excitement in carbon nanotubes (CNTs) was triggered by Sumio Iijima's Nature publication in 1991 [1]. At that time there was a considerable interest in developing the arc evaporation method, initially discovered by Huffman and Krätschmer [2], for the production of C60 in macroscopic amounts. Iijima analysed the deposit on the cathode and found macroscopic amounts of multi-walled carbon nanotubes (MWNTs) and facetted graphitic particles. The lack of fullerenes in the sample was unexpected. Moreover, the excitement at that time in carbon nanostructures, born out of the discovery of fullerenes [3] was a further favourable factor and so his publication drew significant attention. Iijima's next step was to see if he could fill these structures with transition metals. Transition metals were mixed into the graphitic electrodes and the arc evaporation process was run. The resultant product sprung another surprise. This time, a new form of carbon nanotube, namely, single-walled carbon nanotubes (SWNTs) with diameters between 1.1 and 1.3 nm were obtained [4]. Almost at the exact same time Donald S. Bethune, at IBM research laboratory, made the same discovery (see Figure 1) [5]. The discovery of SWNT was particularly exciting due to interesting structure-property correlations. In addition, it highlighted the use of transition metals as catalysts for carbon nanotube synthesis. Over the next years, a massive amount of synthesis routes and variations were developed. Most of these were based on the use of catalyst particles, including the chemical vapour deposition (CVD) route. CVD synthesis of CNT is facile and can be set up in laboratories without difficulty. Moreover, it is easily scaled up for mass production and so has developed into the most popular technique.


Synthesis of carbon nanotubes with and without catalyst particles.

Rümmeli MH, Bachmatiuk A, Börrnert F, Schäffel F, Ibrahim I, Cendrowski K, Simha-Martynkova G, Plachá D, Borowiak-Palen E, Cuniberti G, Büchner B - Nanoscale Res Lett (2011)

Transmission electron micrographs of SWNT bundles (left panel) and an individual SWNT (right panel) synthesized from cobalt by Bethune et al. Reprinted with permission from Bethune et al. [5].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211370&req=5

Figure 1: Transmission electron micrographs of SWNT bundles (left panel) and an individual SWNT (right panel) synthesized from cobalt by Bethune et al. Reprinted with permission from Bethune et al. [5].
Mentions: The current excitement in carbon nanotubes (CNTs) was triggered by Sumio Iijima's Nature publication in 1991 [1]. At that time there was a considerable interest in developing the arc evaporation method, initially discovered by Huffman and Krätschmer [2], for the production of C60 in macroscopic amounts. Iijima analysed the deposit on the cathode and found macroscopic amounts of multi-walled carbon nanotubes (MWNTs) and facetted graphitic particles. The lack of fullerenes in the sample was unexpected. Moreover, the excitement at that time in carbon nanostructures, born out of the discovery of fullerenes [3] was a further favourable factor and so his publication drew significant attention. Iijima's next step was to see if he could fill these structures with transition metals. Transition metals were mixed into the graphitic electrodes and the arc evaporation process was run. The resultant product sprung another surprise. This time, a new form of carbon nanotube, namely, single-walled carbon nanotubes (SWNTs) with diameters between 1.1 and 1.3 nm were obtained [4]. Almost at the exact same time Donald S. Bethune, at IBM research laboratory, made the same discovery (see Figure 1) [5]. The discovery of SWNT was particularly exciting due to interesting structure-property correlations. In addition, it highlighted the use of transition metals as catalysts for carbon nanotube synthesis. Over the next years, a massive amount of synthesis routes and variations were developed. Most of these were based on the use of catalyst particles, including the chemical vapour deposition (CVD) route. CVD synthesis of CNT is facile and can be set up in laboratories without difficulty. Moreover, it is easily scaled up for mass production and so has developed into the most popular technique.

Bottom Line: More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes.All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated.These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis.

View Article: PubMed Central - HTML - PubMed

Affiliation: IFW Dresden, P,O, Box 270116, 01069 Dresden, Germany. m.ruemmeli@ifw-dresden.de.

ABSTRACT
The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis.

No MeSH data available.


Related in: MedlinePlus