Limits...
Efficient Performance of Electrostatic Spray-Deposited TiO 2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

View Article: PubMed Central - HTML - PubMed

ABSTRACT

A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

No MeSH data available.


Related in: MedlinePlus

Schematic of a electrostatic spray deposition of TiO2 compact layer, b SHI-irradiated TiO2 compact layer and, c SHI-irradiated TiO2 compact layer assisted DSSCs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211366&req=5

Figure 1: Schematic of a electrostatic spray deposition of TiO2 compact layer, b SHI-irradiated TiO2 compact layer and, c SHI-irradiated TiO2 compact layer assisted DSSCs.

Mentions: N719 dye (di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II)) was used to sensitize the TiO2 photo electrodes. The TiO2 electrodes were immersed overnight in a 0.3 mM dye solution containing a mixture of acetonitrile (ACN) and t-butyl alcohol (1:1 v/v) and dried at room temperature. A sandwich-type configuration was employed to measure the performance of the dye-sensitized solar cells, using a Pt-coated F-doped SnO2 film as a counter electrode and 0.5 M MPII (1-methyl-3-propylimidazolium iodide) with 0.05 M I2 in ACN as the electrolyte solution. Current–voltage characteristics of DSSCs were performed under 1 sun illumination (AM 1.5G, 100 mW cm-2) with a Newport (USA) solar simulator (300 W Xe source) and a Keithley 2,400 source meter (device area is 0.16 cm2). The different stages of the cell fabrication are schematically shown in Figure 1. Electrochemical impedance measurements were carried out using a potentiostat (IM6 ZAHNER) equipped with a frequency response analyzer (Thales) in the frequency range of 0.1 Hz–1,000 kHz. The results were analyzed with an equivalent circuit model for interpreting the characteristics of the DSSCs. Incident photon-to-current conversion efficiency (IPCE) of DSSCs was measured using PV Measurements Inc. (Model QEX7) with bias illumination with reference to the calibrated silicon diode.


Efficient Performance of Electrostatic Spray-Deposited TiO 2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation
Schematic of a electrostatic spray deposition of TiO2 compact layer, b SHI-irradiated TiO2 compact layer and, c SHI-irradiated TiO2 compact layer assisted DSSCs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211366&req=5

Figure 1: Schematic of a electrostatic spray deposition of TiO2 compact layer, b SHI-irradiated TiO2 compact layer and, c SHI-irradiated TiO2 compact layer assisted DSSCs.
Mentions: N719 dye (di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II)) was used to sensitize the TiO2 photo electrodes. The TiO2 electrodes were immersed overnight in a 0.3 mM dye solution containing a mixture of acetonitrile (ACN) and t-butyl alcohol (1:1 v/v) and dried at room temperature. A sandwich-type configuration was employed to measure the performance of the dye-sensitized solar cells, using a Pt-coated F-doped SnO2 film as a counter electrode and 0.5 M MPII (1-methyl-3-propylimidazolium iodide) with 0.05 M I2 in ACN as the electrolyte solution. Current–voltage characteristics of DSSCs were performed under 1 sun illumination (AM 1.5G, 100 mW cm-2) with a Newport (USA) solar simulator (300 W Xe source) and a Keithley 2,400 source meter (device area is 0.16 cm2). The different stages of the cell fabrication are schematically shown in Figure 1. Electrochemical impedance measurements were carried out using a potentiostat (IM6 ZAHNER) equipped with a frequency response analyzer (Thales) in the frequency range of 0.1 Hz–1,000 kHz. The results were analyzed with an equivalent circuit model for interpreting the characteristics of the DSSCs. Incident photon-to-current conversion efficiency (IPCE) of DSSCs was measured using PV Measurements Inc. (Model QEX7) with bias illumination with reference to the calibrated silicon diode.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

No MeSH data available.


Related in: MedlinePlus