Limits...
Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles.

Ruan J, Wang K, Song H, Xu X, Ji J, Cui D - Nanoscale Res Lett (2011)

Bottom Line: HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days.FMNPs primarily accumulated in those organs such as lung, liver, and spleen.The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. dxcui@sjtu.edu.cn.

ABSTRACT
Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

No MeSH data available.


Related in: MedlinePlus

Location of the FMNPs on HEK293 cell: (a) the microscopy image of FMNPs presenting red fluorescence inside of the HEK293 cells; (b) the microscopy image of HEK293 cells nuclear counterstaining with Hoechst 33258; (c) image of combining the blue nuclear and red FMNPs; (d) the microscopy image of HEK293 cells' Prussian blue staining; and (e) TEM image of microstructure of HEK293 cell treated with 50 μg/ml FMNPs for 24 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211365&req=5

Figure 3: Location of the FMNPs on HEK293 cell: (a) the microscopy image of FMNPs presenting red fluorescence inside of the HEK293 cells; (b) the microscopy image of HEK293 cells nuclear counterstaining with Hoechst 33258; (c) image of combining the blue nuclear and red FMNPs; (d) the microscopy image of HEK293 cells' Prussian blue staining; and (e) TEM image of microstructure of HEK293 cell treated with 50 μg/ml FMNPs for 24 h.

Mentions: As shown in Figure 3a, FMNPs were endocytosed by HEK293 cells, and located in the cytoplasm around nucleus, FMNPs exhibited red color (Figure 3a), and cell nucleuses exhibited blue color (Figure 3b), Figure 3c is the combined image of red and blue colors. The similar results were also confirmed by Prussian blue staining method (Figure 3d), and TEM imaging (Figure 3e). According to our observation, the HEK293 cells first formed pseudopodia, then wrapped FMNPs into cytoplasm, FMNPs mainly located inside lysosome and endosome [48,49]. Within cultured time, we did not observe that FMNPs were exited out of cells, FMNPs coexisted with cells well.


Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles.

Ruan J, Wang K, Song H, Xu X, Ji J, Cui D - Nanoscale Res Lett (2011)

Location of the FMNPs on HEK293 cell: (a) the microscopy image of FMNPs presenting red fluorescence inside of the HEK293 cells; (b) the microscopy image of HEK293 cells nuclear counterstaining with Hoechst 33258; (c) image of combining the blue nuclear and red FMNPs; (d) the microscopy image of HEK293 cells' Prussian blue staining; and (e) TEM image of microstructure of HEK293 cell treated with 50 μg/ml FMNPs for 24 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211365&req=5

Figure 3: Location of the FMNPs on HEK293 cell: (a) the microscopy image of FMNPs presenting red fluorescence inside of the HEK293 cells; (b) the microscopy image of HEK293 cells nuclear counterstaining with Hoechst 33258; (c) image of combining the blue nuclear and red FMNPs; (d) the microscopy image of HEK293 cells' Prussian blue staining; and (e) TEM image of microstructure of HEK293 cell treated with 50 μg/ml FMNPs for 24 h.
Mentions: As shown in Figure 3a, FMNPs were endocytosed by HEK293 cells, and located in the cytoplasm around nucleus, FMNPs exhibited red color (Figure 3a), and cell nucleuses exhibited blue color (Figure 3b), Figure 3c is the combined image of red and blue colors. The similar results were also confirmed by Prussian blue staining method (Figure 3d), and TEM imaging (Figure 3e). According to our observation, the HEK293 cells first formed pseudopodia, then wrapped FMNPs into cytoplasm, FMNPs mainly located inside lysosome and endosome [48,49]. Within cultured time, we did not observe that FMNPs were exited out of cells, FMNPs coexisted with cells well.

Bottom Line: HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days.FMNPs primarily accumulated in those organs such as lung, liver, and spleen.The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. dxcui@sjtu.edu.cn.

ABSTRACT
Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

No MeSH data available.


Related in: MedlinePlus