Limits...
Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles.

Ruan J, Wang K, Song H, Xu X, Ji J, Cui D - Nanoscale Res Lett (2011)

Bottom Line: HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days.FMNPs primarily accumulated in those organs such as lung, liver, and spleen.The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. dxcui@sjtu.edu.cn.

ABSTRACT
Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

No MeSH data available.


Related in: MedlinePlus

The fluorescence intensity and saturation magnetization of the FMNPs. (a) Images of FMNPs under UV irradiation with (top) and without (bottom) an external magnetic field; (b) PL spectra of different emission wavelength of CdTe QDs and FMNPs; (c) field-dependent magnetization curve of FMNPs at room temperature.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211365&req=5

Figure 2: The fluorescence intensity and saturation magnetization of the FMNPs. (a) Images of FMNPs under UV irradiation with (top) and without (bottom) an external magnetic field; (b) PL spectra of different emission wavelength of CdTe QDs and FMNPs; (c) field-dependent magnetization curve of FMNPs at room temperature.

Mentions: As shown in Figure 2a, FMNPs showed different colors under UV radiation, which is because we used different sizes of CdTe QDs in the course of preparing FMNPs. FMNPs were assembled and the solution became transparent under the external magnetic field (top), after removal of the external magnetic field, the aggregations were rapidly redispersed evenly (bottom). As shown in Figure 2b, the PL spectra of FMNPs showed that the emission peak of prepared FMNPs was symmetric with a 5 nm blue shift compared with pure QDs. As shown in Figure 2c, the magnetic hysteresis curve of prepared FMNPs clearly indicated that prepared FMNPs owned superparamagnetic property at room temperature with a saturation magnetization (Ms) value of 4.0 emu g-1. This Ms value was lower than the saturation magnetization of Fe3O4/PS (Ms = 38 emu·g-1). The reduction of Ms Value is attributed to the lower density of the magnetic component in prepared FMNPs.


Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles.

Ruan J, Wang K, Song H, Xu X, Ji J, Cui D - Nanoscale Res Lett (2011)

The fluorescence intensity and saturation magnetization of the FMNPs. (a) Images of FMNPs under UV irradiation with (top) and without (bottom) an external magnetic field; (b) PL spectra of different emission wavelength of CdTe QDs and FMNPs; (c) field-dependent magnetization curve of FMNPs at room temperature.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211365&req=5

Figure 2: The fluorescence intensity and saturation magnetization of the FMNPs. (a) Images of FMNPs under UV irradiation with (top) and without (bottom) an external magnetic field; (b) PL spectra of different emission wavelength of CdTe QDs and FMNPs; (c) field-dependent magnetization curve of FMNPs at room temperature.
Mentions: As shown in Figure 2a, FMNPs showed different colors under UV radiation, which is because we used different sizes of CdTe QDs in the course of preparing FMNPs. FMNPs were assembled and the solution became transparent under the external magnetic field (top), after removal of the external magnetic field, the aggregations were rapidly redispersed evenly (bottom). As shown in Figure 2b, the PL spectra of FMNPs showed that the emission peak of prepared FMNPs was symmetric with a 5 nm blue shift compared with pure QDs. As shown in Figure 2c, the magnetic hysteresis curve of prepared FMNPs clearly indicated that prepared FMNPs owned superparamagnetic property at room temperature with a saturation magnetization (Ms) value of 4.0 emu g-1. This Ms value was lower than the saturation magnetization of Fe3O4/PS (Ms = 38 emu·g-1). The reduction of Ms Value is attributed to the lower density of the magnetic component in prepared FMNPs.

Bottom Line: HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days.FMNPs primarily accumulated in those organs such as lung, liver, and spleen.The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. dxcui@sjtu.edu.cn.

ABSTRACT
Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

No MeSH data available.


Related in: MedlinePlus