Limits...
Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells.

Tan F, Qu S, Wu J, Liu K, Zhou S, Wang Z - Nanoscale Res Lett (2011)

Bottom Line: Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process.The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment.AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P,O, Box 912, Beijing 100083, PR China. qsc@semi.ac.cn.

ABSTRACT
Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells.

No MeSH data available.


Photoluminescence spectrum of SnS2 and MDMO-PPV blends with different SnS2 concentration. The inset shows the PL spectrum of SnS2 particle reacted for 12 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211364&req=5

Figure 5: Photoluminescence spectrum of SnS2 and MDMO-PPV blends with different SnS2 concentration. The inset shows the PL spectrum of SnS2 particle reacted for 12 h.

Mentions: Photoluminescence (PL) spectrum is used to research how the addition of SnS2 affects the photo-generated charge transfer in the hybrid. Figure 5 shows the PL quenching of MDMO-PPV following the increasing concentration of SnS2. Indeed, the spectra show that the PL intensity is increasingly lost upon addition of SnS2 due to the fast, sub-picosecond forward electron transfer from MDMO-PPV to SnS2. At 50 wt% SnS2, about 40% of the PL is quenched, and at 90 wt% SnS2, 80% of the PL is quenched. Further increasing of the concentration of SnS2 will not obviously quench the PL. This is attributed to a saturated organic/inorganic interface, which will further decrease the lifetime of photo-generated excitons [23]. Inset in Figure 5 shows the PL spectrum of SnS2 reacted for 12 h. It exhibits two strong emission peaks at 545 and 490 nm. The former is corresponding to radiative recombination of quantum confined electron-hole pair that in energy is a little smaller than the energy bandgap of nanocrystals [24]. The latter is not clear for us at present. We suppose it may be due to radiated recombination of excitons' absorption-generated electrons lying at higher excited energy levels.


Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells.

Tan F, Qu S, Wu J, Liu K, Zhou S, Wang Z - Nanoscale Res Lett (2011)

Photoluminescence spectrum of SnS2 and MDMO-PPV blends with different SnS2 concentration. The inset shows the PL spectrum of SnS2 particle reacted for 12 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211364&req=5

Figure 5: Photoluminescence spectrum of SnS2 and MDMO-PPV blends with different SnS2 concentration. The inset shows the PL spectrum of SnS2 particle reacted for 12 h.
Mentions: Photoluminescence (PL) spectrum is used to research how the addition of SnS2 affects the photo-generated charge transfer in the hybrid. Figure 5 shows the PL quenching of MDMO-PPV following the increasing concentration of SnS2. Indeed, the spectra show that the PL intensity is increasingly lost upon addition of SnS2 due to the fast, sub-picosecond forward electron transfer from MDMO-PPV to SnS2. At 50 wt% SnS2, about 40% of the PL is quenched, and at 90 wt% SnS2, 80% of the PL is quenched. Further increasing of the concentration of SnS2 will not obviously quench the PL. This is attributed to a saturated organic/inorganic interface, which will further decrease the lifetime of photo-generated excitons [23]. Inset in Figure 5 shows the PL spectrum of SnS2 reacted for 12 h. It exhibits two strong emission peaks at 545 and 490 nm. The former is corresponding to radiative recombination of quantum confined electron-hole pair that in energy is a little smaller than the energy bandgap of nanocrystals [24]. The latter is not clear for us at present. We suppose it may be due to radiated recombination of excitons' absorption-generated electrons lying at higher excited energy levels.

Bottom Line: Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process.The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment.AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P,O, Box 912, Beijing 100083, PR China. qsc@semi.ac.cn.

ABSTRACT
Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells.

No MeSH data available.