Limits...
Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system.

Teng TP, Cheng CM, Pai FY - Nanoscale Res Lett (2011)

Bottom Line: The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM.The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water.The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Industrial Education, National Taiwan Normal University, No, 162, Sec, 1, He-ping E, Rd,, Da-an District, Taipei City 10610, Taiwan. tube5711@ntnu.edu.tw.

ABSTRACT
Heat dissipation from electrical appliances is a significant issue with contemporary electrical devices. One factor in the improvement of heat dissipation is the heat transfer performance of the working fluid. In this study, we used plasma arc technology to produce a nanofluid of carbon nanoparticles dispersed in distilled water. In a one-step synthesis, carbon was simultaneously heated and vaporized in the chamber, the carbon vapor and particles were then carried to a collector, where cooling furnished the desired carbon/water nanofluid. The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM. Crystal morphology was examined by XRD. Finally, the characterization include thermal conductivity, viscosity, density and electric conductivity were evaluated by suitable instruments under different temperatures. The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water. The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids.

No MeSH data available.


Related in: MedlinePlus

Dependence relationship between temperatures and density enhanced ratio of carbon/water nanofluid under different fabrication parameters.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211359&req=5

Figure 7: Dependence relationship between temperatures and density enhanced ratio of carbon/water nanofluid under different fabrication parameters.

Mentions: Figure 7 shows changes in the density ratio of carbon/water nanofluids to that of distilled water at various temperatures. Between the enhanced ratio of density and the temperature difference, there is no obvious trend in the ratio due to heating, mainly because the nanofluid is a solid-liquid mixture. The thermal expansion rate of the bulk liquid is different from that of the nanoparticles, thus providing an inconsistent trend in density change. The density of carbon was measured by weighing after drying at fixed weight of nanofluid and calculated by Eq. 1, and the density of carbon nanoparticles was about 1,900 kg/m3 to approximately 2,050 kg/m3. For a concentration of about 0.02 wt.% (NC-70) and a temperature in the range of 20-50°C, the density increases by 0.01-0.39%. For a concentration of about 0.04 wt.% (NC-80), the increase in density is 0.02-0.50%. The minimum increase in density ratios for both samples occurs at 30°C. The scope of the experimental deviation is limited because density change is not obvious.


Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system.

Teng TP, Cheng CM, Pai FY - Nanoscale Res Lett (2011)

Dependence relationship between temperatures and density enhanced ratio of carbon/water nanofluid under different fabrication parameters.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211359&req=5

Figure 7: Dependence relationship between temperatures and density enhanced ratio of carbon/water nanofluid under different fabrication parameters.
Mentions: Figure 7 shows changes in the density ratio of carbon/water nanofluids to that of distilled water at various temperatures. Between the enhanced ratio of density and the temperature difference, there is no obvious trend in the ratio due to heating, mainly because the nanofluid is a solid-liquid mixture. The thermal expansion rate of the bulk liquid is different from that of the nanoparticles, thus providing an inconsistent trend in density change. The density of carbon was measured by weighing after drying at fixed weight of nanofluid and calculated by Eq. 1, and the density of carbon nanoparticles was about 1,900 kg/m3 to approximately 2,050 kg/m3. For a concentration of about 0.02 wt.% (NC-70) and a temperature in the range of 20-50°C, the density increases by 0.01-0.39%. For a concentration of about 0.04 wt.% (NC-80), the increase in density is 0.02-0.50%. The minimum increase in density ratios for both samples occurs at 30°C. The scope of the experimental deviation is limited because density change is not obvious.

Bottom Line: The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM.The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water.The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Industrial Education, National Taiwan Normal University, No, 162, Sec, 1, He-ping E, Rd,, Da-an District, Taipei City 10610, Taiwan. tube5711@ntnu.edu.tw.

ABSTRACT
Heat dissipation from electrical appliances is a significant issue with contemporary electrical devices. One factor in the improvement of heat dissipation is the heat transfer performance of the working fluid. In this study, we used plasma arc technology to produce a nanofluid of carbon nanoparticles dispersed in distilled water. In a one-step synthesis, carbon was simultaneously heated and vaporized in the chamber, the carbon vapor and particles were then carried to a collector, where cooling furnished the desired carbon/water nanofluid. The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM. Crystal morphology was examined by XRD. Finally, the characterization include thermal conductivity, viscosity, density and electric conductivity were evaluated by suitable instruments under different temperatures. The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water. The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids.

No MeSH data available.


Related in: MedlinePlus