Limits...
Novel Strategy to Fabricate PLA/Au Nanocomposites as an Efficient Drug Carrier for Human Leukemia Cells in Vitro

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Poly (lactic acid) (PLA) polymer has the promising applications in the biomedical field because of its biodegradability and safe elimination. In this study, we have explored the bio-application of new nanocomposites composed with PLA nanofibers and Au nanoparticles as the potential drug carrier for an efficient drug delivery in target cancer cells. The results demonstrated that the anticancer drug daunorubicin could be efficiently self-assembled on the surface of PLA/Au nanocomposites and the synergistic enhancement of PLA/Au nanocomposites conjugated with daunorubicin into drug-sensitive K562 and drug-resistant leukemia K562/AO2 cells could be obviously observed by MTT assay and confocal fluorescence microscopy studies. These observations suggest that the new nanocomposites could readily induce daunorubicin to accumulate and uptake in target leukemia cells and increase the drug's cytotoxicity. Especially, the PLA/Au nanocomposites could significantly facilitate the cellular drug absorbtion of daunorubicin into drug-resistant K562/AO2 cells and efficiently inhibit the cancer cell proliferation. This raised the possibility to utilize the PLA/Au nanocomposites as a new effective additive agent to inhibit the drug resistance and thus as a novel strategy to sensitively track the respective cancer cells.

No MeSH data available.


Related in: MedlinePlus

Confocal fluorescence microscopy images of different leukemia cancer cells treated with anticancer agents. a K562 treated with DNR, c K562 treated with DNR and PLA nanopolymers, e K562 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems); b K562/AO2 treated with DNR, d K562/AO2 treated with DNR and PLA nanopolymers, f K562/AO2 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems). g and h, respectively, give the quantitative fluorescence intensity curves of images for K562 system (g) and K562/AO2 system (h) in which the single cell was respectively selected from the above related systems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211355&req=5

Figure 4: Confocal fluorescence microscopy images of different leukemia cancer cells treated with anticancer agents. a K562 treated with DNR, c K562 treated with DNR and PLA nanopolymers, e K562 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems); b K562/AO2 treated with DNR, d K562/AO2 treated with DNR and PLA nanopolymers, f K562/AO2 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems). g and h, respectively, give the quantitative fluorescence intensity curves of images for K562 system (g) and K562/AO2 system (h) in which the single cell was respectively selected from the above related systems.

Mentions: With the good fluorescence characteristics, DNR could also be utilized as the fluorescence probe to track its location and concentration inside the cells. As shown in Figure 4, the synergistic effect for the uptake of DNR on K562 and K562/AO2 could be obviously observed by the laser confocal fluorescence microscopy. Figure 4 showed the typical images of the confocal fluorescence microscopy of different leukemia cancer cells. It appeared that the relatively weak drug uptake was observed when the cancer cells were only treated with DNR. While the intracellular fluorescence was slightly strengthened after relevant cells incubated by DNR together with PLA nanofibers. In comparison, when PLA/Au nanocomposites conjugated with DNR were incorporated into the target system, PLA/Au nanocomposites have an apparent synergistic effect on the drug uptake of DNR in the respective cancer cells, where the intracellular fluorescence intensity was remarkably enhanced upon application of the PLA/Au nanocomposites together with DNR, as shown in Figure 4e and 4f. Since the PLA/Au nanocomposites themselves have no fluorescence, the intracellular fluorescence was only generated by the anticancer drug DNR. Our previous study indicates that the presence of bare Au nanoparticles alone could just slightly enhance the uptake of DNR by K562 cells [8]. Hence, these results indicated that much more DNR molecules could be efficiently accumulated in the cancer cells upon application of DNR together with PLA/Au nanocomposites.


Novel Strategy to Fabricate PLA/Au Nanocomposites as an Efficient Drug Carrier for Human Leukemia Cells in Vitro
Confocal fluorescence microscopy images of different leukemia cancer cells treated with anticancer agents. a K562 treated with DNR, c K562 treated with DNR and PLA nanopolymers, e K562 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems); b K562/AO2 treated with DNR, d K562/AO2 treated with DNR and PLA nanopolymers, f K562/AO2 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems). g and h, respectively, give the quantitative fluorescence intensity curves of images for K562 system (g) and K562/AO2 system (h) in which the single cell was respectively selected from the above related systems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211355&req=5

Figure 4: Confocal fluorescence microscopy images of different leukemia cancer cells treated with anticancer agents. a K562 treated with DNR, c K562 treated with DNR and PLA nanopolymers, e K562 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems); b K562/AO2 treated with DNR, d K562/AO2 treated with DNR and PLA nanopolymers, f K562/AO2 treated with DNR conjugated with PLA/Au nanocomposites (DNR was 1 × 10-6 M in the above systems). g and h, respectively, give the quantitative fluorescence intensity curves of images for K562 system (g) and K562/AO2 system (h) in which the single cell was respectively selected from the above related systems.
Mentions: With the good fluorescence characteristics, DNR could also be utilized as the fluorescence probe to track its location and concentration inside the cells. As shown in Figure 4, the synergistic effect for the uptake of DNR on K562 and K562/AO2 could be obviously observed by the laser confocal fluorescence microscopy. Figure 4 showed the typical images of the confocal fluorescence microscopy of different leukemia cancer cells. It appeared that the relatively weak drug uptake was observed when the cancer cells were only treated with DNR. While the intracellular fluorescence was slightly strengthened after relevant cells incubated by DNR together with PLA nanofibers. In comparison, when PLA/Au nanocomposites conjugated with DNR were incorporated into the target system, PLA/Au nanocomposites have an apparent synergistic effect on the drug uptake of DNR in the respective cancer cells, where the intracellular fluorescence intensity was remarkably enhanced upon application of the PLA/Au nanocomposites together with DNR, as shown in Figure 4e and 4f. Since the PLA/Au nanocomposites themselves have no fluorescence, the intracellular fluorescence was only generated by the anticancer drug DNR. Our previous study indicates that the presence of bare Au nanoparticles alone could just slightly enhance the uptake of DNR by K562 cells [8]. Hence, these results indicated that much more DNR molecules could be efficiently accumulated in the cancer cells upon application of DNR together with PLA/Au nanocomposites.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Poly (lactic acid) (PLA) polymer has the promising applications in the biomedical field because of its biodegradability and safe elimination. In this study, we have explored the bio-application of new nanocomposites composed with PLA nanofibers and Au nanoparticles as the potential drug carrier for an efficient drug delivery in target cancer cells. The results demonstrated that the anticancer drug daunorubicin could be efficiently self-assembled on the surface of PLA/Au nanocomposites and the synergistic enhancement of PLA/Au nanocomposites conjugated with daunorubicin into drug-sensitive K562 and drug-resistant leukemia K562/AO2 cells could be obviously observed by MTT assay and confocal fluorescence microscopy studies. These observations suggest that the new nanocomposites could readily induce daunorubicin to accumulate and uptake in target leukemia cells and increase the drug's cytotoxicity. Especially, the PLA/Au nanocomposites could significantly facilitate the cellular drug absorbtion of daunorubicin into drug-resistant K562/AO2 cells and efficiently inhibit the cancer cell proliferation. This raised the possibility to utilize the PLA/Au nanocomposites as a new effective additive agent to inhibit the drug resistance and thus as a novel strategy to sensitively track the respective cancer cells.

No MeSH data available.


Related in: MedlinePlus