Limits...
Novel Strategy to Fabricate PLA/Au Nanocomposites as an Efficient Drug Carrier for Human Leukemia Cells in Vitro

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Poly (lactic acid) (PLA) polymer has the promising applications in the biomedical field because of its biodegradability and safe elimination. In this study, we have explored the bio-application of new nanocomposites composed with PLA nanofibers and Au nanoparticles as the potential drug carrier for an efficient drug delivery in target cancer cells. The results demonstrated that the anticancer drug daunorubicin could be efficiently self-assembled on the surface of PLA/Au nanocomposites and the synergistic enhancement of PLA/Au nanocomposites conjugated with daunorubicin into drug-sensitive K562 and drug-resistant leukemia K562/AO2 cells could be obviously observed by MTT assay and confocal fluorescence microscopy studies. These observations suggest that the new nanocomposites could readily induce daunorubicin to accumulate and uptake in target leukemia cells and increase the drug's cytotoxicity. Especially, the PLA/Au nanocomposites could significantly facilitate the cellular drug absorbtion of daunorubicin into drug-resistant K562/AO2 cells and efficiently inhibit the cancer cell proliferation. This raised the possibility to utilize the PLA/Au nanocomposites as a new effective additive agent to inhibit the drug resistance and thus as a novel strategy to sensitively track the respective cancer cells.

No MeSH data available.


Typical AFM images of a Au nanoparticles, and b PLA nanofiber.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211355&req=5

Figure 1: Typical AFM images of a Au nanoparticles, and b PLA nanofiber.

Mentions: As shown in Figures 1 and 2, the AFM images of PLA nanofibers, Au nanoparticles and the blending of the PLA/Au nanocomposites with daunorubicin demonstrate that upon blending of daunorubicin with the PLA/Au nanocomposites, some relatively large nanospheres appear at PLA chains. It is observed that there was a discernible substrate under the spherical particles, which is at the same level as the pure PLA nanofiber, the average height of which is about 1.5 ± 0.05 nm. Meanwhile, relevant measurements show that the average height of the conjugated nanocomplexes was (26 ± 0.62) nm, and the average outer diameter of spherical nanoparticles was (22 ± 0.55) nm. It is apparent that the Au nanoparticles and the drug molecules could self-assemble or pack together to form the spherical particles on poly(lactic acid) nanofibers, as shown in Figure 2. The rational behind this could be attributed to the fact that daunorubicin is positively charged while the relative surface of nano PLA/Au polymer nanofibers is negatively charged in pH 7.2 PBS solution. Thus, daunorubicin could be readily self-assembled onto the surface of PLA/Au nanocomposites through electrostatic interaction and other non-covalent binding.


Novel Strategy to Fabricate PLA/Au Nanocomposites as an Efficient Drug Carrier for Human Leukemia Cells in Vitro
Typical AFM images of a Au nanoparticles, and b PLA nanofiber.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211355&req=5

Figure 1: Typical AFM images of a Au nanoparticles, and b PLA nanofiber.
Mentions: As shown in Figures 1 and 2, the AFM images of PLA nanofibers, Au nanoparticles and the blending of the PLA/Au nanocomposites with daunorubicin demonstrate that upon blending of daunorubicin with the PLA/Au nanocomposites, some relatively large nanospheres appear at PLA chains. It is observed that there was a discernible substrate under the spherical particles, which is at the same level as the pure PLA nanofiber, the average height of which is about 1.5 ± 0.05 nm. Meanwhile, relevant measurements show that the average height of the conjugated nanocomplexes was (26 ± 0.62) nm, and the average outer diameter of spherical nanoparticles was (22 ± 0.55) nm. It is apparent that the Au nanoparticles and the drug molecules could self-assemble or pack together to form the spherical particles on poly(lactic acid) nanofibers, as shown in Figure 2. The rational behind this could be attributed to the fact that daunorubicin is positively charged while the relative surface of nano PLA/Au polymer nanofibers is negatively charged in pH 7.2 PBS solution. Thus, daunorubicin could be readily self-assembled onto the surface of PLA/Au nanocomposites through electrostatic interaction and other non-covalent binding.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Poly (lactic acid) (PLA) polymer has the promising applications in the biomedical field because of its biodegradability and safe elimination. In this study, we have explored the bio-application of new nanocomposites composed with PLA nanofibers and Au nanoparticles as the potential drug carrier for an efficient drug delivery in target cancer cells. The results demonstrated that the anticancer drug daunorubicin could be efficiently self-assembled on the surface of PLA/Au nanocomposites and the synergistic enhancement of PLA/Au nanocomposites conjugated with daunorubicin into drug-sensitive K562 and drug-resistant leukemia K562/AO2 cells could be obviously observed by MTT assay and confocal fluorescence microscopy studies. These observations suggest that the new nanocomposites could readily induce daunorubicin to accumulate and uptake in target leukemia cells and increase the drug's cytotoxicity. Especially, the PLA/Au nanocomposites could significantly facilitate the cellular drug absorbtion of daunorubicin into drug-resistant K562/AO2 cells and efficiently inhibit the cancer cell proliferation. This raised the possibility to utilize the PLA/Au nanocomposites as a new effective additive agent to inhibit the drug resistance and thus as a novel strategy to sensitively track the respective cancer cells.

No MeSH data available.