Limits...
Thermal conductivity and thermal boundary resistance of nanostructures.

Termentzidis K, Parasuraman J, Da Cruz CA, Merabia S, Angelescu D, Marty F, Bourouina T, Kleber X, Chantrenne P, Basset P - Nanoscale Res Lett (2011)

Bottom Line: The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics.Physical explanations are provided for rationalizing the simulation results.PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

View Article: PubMed Central - HTML - PubMed

Affiliation: INSA Lyon, CETHIL UMR5008, F-69621 Villeurbanne, France. konstantinos.termentzidis@gmail.com.

ABSTRACT
: We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

No MeSH data available.


Related in: MedlinePlus

Temperature profile for the Si/Ag system.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211353&req=5

Figure 8: Temperature profile for the Si/Ag system.

Mentions: The interactions between silicon and silver are described thanks to the 2NN MEAM potential in which the set of parameters has been determined to produce a realistic atomic configuration of interfaces. The model structure consists of two slabs in contact: one of Si with a diamond structure, and one of Ag. The periodic boundary conditions are used in all the directions and the Si crystal is composed of 7200 atoms, while the Ag crystal is composed of 2560 atoms. In the first stage of MD simulation, the system is equilibrated at a constant temperature of 300 K for 20 ps using an integration time step of 5 fs. The heat sources are placed in the extremes of the structure, and one layer of Si and Ag is frozen to block the movement of Si atoms in the z-direction. The temperature gradient is formed in the z-direction, imposing hot and cold temperatures above and below the fixed atoms in z-direction. Using an integration time step of 5 fs, the simulation is run for 5.0 ns, with an average system temperature of 300 K. In Figure 8, the temperature profile for the Si/Ag system is shown.


Thermal conductivity and thermal boundary resistance of nanostructures.

Termentzidis K, Parasuraman J, Da Cruz CA, Merabia S, Angelescu D, Marty F, Bourouina T, Kleber X, Chantrenne P, Basset P - Nanoscale Res Lett (2011)

Temperature profile for the Si/Ag system.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211353&req=5

Figure 8: Temperature profile for the Si/Ag system.
Mentions: The interactions between silicon and silver are described thanks to the 2NN MEAM potential in which the set of parameters has been determined to produce a realistic atomic configuration of interfaces. The model structure consists of two slabs in contact: one of Si with a diamond structure, and one of Ag. The periodic boundary conditions are used in all the directions and the Si crystal is composed of 7200 atoms, while the Ag crystal is composed of 2560 atoms. In the first stage of MD simulation, the system is equilibrated at a constant temperature of 300 K for 20 ps using an integration time step of 5 fs. The heat sources are placed in the extremes of the structure, and one layer of Si and Ag is frozen to block the movement of Si atoms in the z-direction. The temperature gradient is formed in the z-direction, imposing hot and cold temperatures above and below the fixed atoms in z-direction. Using an integration time step of 5 fs, the simulation is run for 5.0 ns, with an average system temperature of 300 K. In Figure 8, the temperature profile for the Si/Ag system is shown.

Bottom Line: The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics.Physical explanations are provided for rationalizing the simulation results.PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

View Article: PubMed Central - HTML - PubMed

Affiliation: INSA Lyon, CETHIL UMR5008, F-69621 Villeurbanne, France. konstantinos.termentzidis@gmail.com.

ABSTRACT
: We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

No MeSH data available.


Related in: MedlinePlus