Limits...
Thermal conductivity and thermal boundary resistance of nanostructures.

Termentzidis K, Parasuraman J, Da Cruz CA, Merabia S, Angelescu D, Marty F, Bourouina T, Kleber X, Chantrenne P, Basset P - Nanoscale Res Lett (2011)

Bottom Line: The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics.Physical explanations are provided for rationalizing the simulation results.PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

View Article: PubMed Central - HTML - PubMed

Affiliation: INSA Lyon, CETHIL UMR5008, F-69621 Villeurbanne, France. konstantinos.termentzidis@gmail.com.

ABSTRACT
: We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

No MeSH data available.


Related in: MedlinePlus

Phonon dispersion curves using the potentials of 1NN MEAM, and 2NN MEAM for Ag.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211353&req=5

Figure 6: Phonon dispersion curves using the potentials of 1NN MEAM, and 2NN MEAM for Ag.

Mentions: In dielectric materials heat transfer depends mainly on phonons' propagation and their interactions. To make the best choice among a great number of potentials for calculating thermal conductivity, the dispersion curves and the lattice expansion coefficient were studied. Electron transport predominates at the heat transfer in metals. MD cannot simulate electron movement, although some models are suggested in the literature to include the interactions between electron and phonons but without yet a satisfying results for investigating heat transfer. As it is not possible to test the quality of electronic interactions, only the lattice properties are commented to determine the correct potential for simulating Ag. The dispersion curves in the [ξ, 0, 0], [ξ, ξ, 0] and [ξ, ξ, ξ] directions are determined and compared with the experimental dispersion curves of Ag [29] for the 1NN MEAM and 2NN MEAM (Figure 6).


Thermal conductivity and thermal boundary resistance of nanostructures.

Termentzidis K, Parasuraman J, Da Cruz CA, Merabia S, Angelescu D, Marty F, Bourouina T, Kleber X, Chantrenne P, Basset P - Nanoscale Res Lett (2011)

Phonon dispersion curves using the potentials of 1NN MEAM, and 2NN MEAM for Ag.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211353&req=5

Figure 6: Phonon dispersion curves using the potentials of 1NN MEAM, and 2NN MEAM for Ag.
Mentions: In dielectric materials heat transfer depends mainly on phonons' propagation and their interactions. To make the best choice among a great number of potentials for calculating thermal conductivity, the dispersion curves and the lattice expansion coefficient were studied. Electron transport predominates at the heat transfer in metals. MD cannot simulate electron movement, although some models are suggested in the literature to include the interactions between electron and phonons but without yet a satisfying results for investigating heat transfer. As it is not possible to test the quality of electronic interactions, only the lattice properties are commented to determine the correct potential for simulating Ag. The dispersion curves in the [ξ, 0, 0], [ξ, ξ, 0] and [ξ, ξ, ξ] directions are determined and compared with the experimental dispersion curves of Ag [29] for the 1NN MEAM and 2NN MEAM (Figure 6).

Bottom Line: The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics.Physical explanations are provided for rationalizing the simulation results.PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

View Article: PubMed Central - HTML - PubMed

Affiliation: INSA Lyon, CETHIL UMR5008, F-69621 Villeurbanne, France. konstantinos.termentzidis@gmail.com.

ABSTRACT
: We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

No MeSH data available.


Related in: MedlinePlus