Limits...
A review on boiling heat transfer enhancement with nanofluids.

Barber J, Brutin D, Tadrist L - Nanoscale Res Lett (2011)

Bottom Line: This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid.Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling.Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Aix-Marseille Université (UI, UII)-CNRS Laboratoire IUSTI, UMR 6595, 5 Rue Enrico Fermi, Marseille, 13453, France. barber@polytech.univ-mrs.fr.

ABSTRACT
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

No MeSH data available.


Related in: MedlinePlus

Water and Al2O3 nanoparticle drops of different particle concentrations on heater surfaces boiled in corresponding nanoparticle concentration nanofluid [44]. (a) θ = 90°, water on clean heater wire; (b) θ = 46.5°, droplet of 0.00257 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid; (c) θ = 33°, droplet of 0.00646 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211345&req=5

Figure 6: Water and Al2O3 nanoparticle drops of different particle concentrations on heater surfaces boiled in corresponding nanoparticle concentration nanofluid [44]. (a) θ = 90°, water on clean heater wire; (b) θ = 46.5°, droplet of 0.00257 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid; (c) θ = 33°, droplet of 0.00646 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid.

Mentions: Nanofluid use in BHT has been shown in most cases to contribute to CHF enhancement. Research on surface characteristics indicates that deposition of nanoparticles on the heating surface is one of the main causes behind the CHF enhancement. Surface wettability, liquid spreadability and morphology are some of the heater surface properties altered by the nanoparticle deposition. Figure 6 illustrates how the contact angle drastically changes, dependent on whether the heated surface has been exposed to nanofluid boiling or not. The wettability also changes depending on the nanoparticle concentration in the base fluid, with a two-fold increase in the concentration of Al2O3 nanoparticles in water decreasing the contact angle from 46.5° to 33°.


A review on boiling heat transfer enhancement with nanofluids.

Barber J, Brutin D, Tadrist L - Nanoscale Res Lett (2011)

Water and Al2O3 nanoparticle drops of different particle concentrations on heater surfaces boiled in corresponding nanoparticle concentration nanofluid [44]. (a) θ = 90°, water on clean heater wire; (b) θ = 46.5°, droplet of 0.00257 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid; (c) θ = 33°, droplet of 0.00646 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211345&req=5

Figure 6: Water and Al2O3 nanoparticle drops of different particle concentrations on heater surfaces boiled in corresponding nanoparticle concentration nanofluid [44]. (a) θ = 90°, water on clean heater wire; (b) θ = 46.5°, droplet of 0.00257 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid; (c) θ = 33°, droplet of 0.00646 g/l concentration of Al2O3 nanofluid (APS 46 nm) on heater wire coated with nanoparticles after boiling this fluid.
Mentions: Nanofluid use in BHT has been shown in most cases to contribute to CHF enhancement. Research on surface characteristics indicates that deposition of nanoparticles on the heating surface is one of the main causes behind the CHF enhancement. Surface wettability, liquid spreadability and morphology are some of the heater surface properties altered by the nanoparticle deposition. Figure 6 illustrates how the contact angle drastically changes, dependent on whether the heated surface has been exposed to nanofluid boiling or not. The wettability also changes depending on the nanoparticle concentration in the base fluid, with a two-fold increase in the concentration of Al2O3 nanoparticles in water decreasing the contact angle from 46.5° to 33°.

Bottom Line: This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid.Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling.Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Aix-Marseille Université (UI, UII)-CNRS Laboratoire IUSTI, UMR 6595, 5 Rue Enrico Fermi, Marseille, 13453, France. barber@polytech.univ-mrs.fr.

ABSTRACT
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

No MeSH data available.


Related in: MedlinePlus