Limits...
A review on boiling heat transfer enhancement with nanofluids.

Barber J, Brutin D, Tadrist L - Nanoscale Res Lett (2011)

Bottom Line: This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid.Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling.Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Aix-Marseille Université (UI, UII)-CNRS Laboratoire IUSTI, UMR 6595, 5 Rue Enrico Fermi, Marseille, 13453, France. barber@polytech.univ-mrs.fr.

ABSTRACT
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

No MeSH data available.


Related in: MedlinePlus

Comparisons of CHF values for pure water and nanofluid on the clean surface, and pure water on a nanoparticle-coated surface [17].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211345&req=5

Figure 2: Comparisons of CHF values for pure water and nanofluid on the clean surface, and pure water on a nanoparticle-coated surface [17].

Mentions: As stated previously in the Introduction, only low volume concentrations of nanoparticles are required to significantly alter the thermal properties of the base fluids. Ahn et al. [17] investigated aqueous nanofluids with a 0.01% concentration of alumina nanoparticles; CHF was distinctly enhanced under forced convective flow conditions compared to that in pure water; see Figure 2. They conducted experiments with varying flow velocities, starting from 0 m/s (effectively pool boiling) up to 4 m/s. A CHF enhancement of 50% was found at 0 m/s, which is consistent with pool boiling CHF enhancement found by previous researchers [30,45]. After the boiling experiments, these authors used a scanning electron microscope (SEM) to examine the heater surfaces, and the contact angle was also measured. They determined that the enhancement was mainly due to nanoparticle deposition on the heater surface during vigorous boiling. This deposition caused the contact angle to decrease from 65° to about 12°, illustrating an evident enhancement in the wettability of the heater surface. The experiments performed by Ahn et al. illustrated that nanofluids caused significant CHF enhancements for both pool boiling and convective flow boiling conditions. Figure 2 shows the comparison between the CHF values for water boiling on both a clean surface and on a nanoparticle-fouled surface. Flow boiling CHF enhancement in nanofluids is strongly related to the surface wettability, which is similar to the pool boiling CHF enhancement as will be discussed in the following section on 'Pool boiling'.


A review on boiling heat transfer enhancement with nanofluids.

Barber J, Brutin D, Tadrist L - Nanoscale Res Lett (2011)

Comparisons of CHF values for pure water and nanofluid on the clean surface, and pure water on a nanoparticle-coated surface [17].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211345&req=5

Figure 2: Comparisons of CHF values for pure water and nanofluid on the clean surface, and pure water on a nanoparticle-coated surface [17].
Mentions: As stated previously in the Introduction, only low volume concentrations of nanoparticles are required to significantly alter the thermal properties of the base fluids. Ahn et al. [17] investigated aqueous nanofluids with a 0.01% concentration of alumina nanoparticles; CHF was distinctly enhanced under forced convective flow conditions compared to that in pure water; see Figure 2. They conducted experiments with varying flow velocities, starting from 0 m/s (effectively pool boiling) up to 4 m/s. A CHF enhancement of 50% was found at 0 m/s, which is consistent with pool boiling CHF enhancement found by previous researchers [30,45]. After the boiling experiments, these authors used a scanning electron microscope (SEM) to examine the heater surfaces, and the contact angle was also measured. They determined that the enhancement was mainly due to nanoparticle deposition on the heater surface during vigorous boiling. This deposition caused the contact angle to decrease from 65° to about 12°, illustrating an evident enhancement in the wettability of the heater surface. The experiments performed by Ahn et al. illustrated that nanofluids caused significant CHF enhancements for both pool boiling and convective flow boiling conditions. Figure 2 shows the comparison between the CHF values for water boiling on both a clean surface and on a nanoparticle-fouled surface. Flow boiling CHF enhancement in nanofluids is strongly related to the surface wettability, which is similar to the pool boiling CHF enhancement as will be discussed in the following section on 'Pool boiling'.

Bottom Line: This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid.Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling.Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Aix-Marseille Université (UI, UII)-CNRS Laboratoire IUSTI, UMR 6595, 5 Rue Enrico Fermi, Marseille, 13453, France. barber@polytech.univ-mrs.fr.

ABSTRACT
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

No MeSH data available.


Related in: MedlinePlus