Limits...
Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol.

Li X, Zhang Y, Fan Y, Zhou Y, Wang X, Fan C, Liu Y, Zhang Q - Nanoscale Res Lett (2011)

Bottom Line: The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion.No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation.The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, People's Republic of China. yanliu@bjmu.edu.cn.

ABSTRACT
Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

No MeSH data available.


The effect of the weight ratio of propofol to polymer (expressed with mPEG-PLA) on encapsulation efficiency (EE). ns: p > 0.05 between any two groups; ** p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211339&req=5

Figure 1: The effect of the weight ratio of propofol to polymer (expressed with mPEG-PLA) on encapsulation efficiency (EE). ns: p > 0.05 between any two groups; ** p < 0.01.

Mentions: To find an optimal ratio of propofol to mPEG-PLA and Solutol HS15, which allowed for the best propofol solubilization, a series of propofol-loaded mixed micelles was prepared with different weight ratios of propofol to polymer (1/5, 1/4, 1/3, 1/2, 1/1, 2/1, expressed with mPEG-PLA) at the same molar ratio of Solutol HS15 to mPEG-PLA (5:5), and the propofol micellization efficiency by each of the micelle dispersions was determined. The effect of the weight ratio of propofol to mPEG-PLA on propofol micellization efficiency was shown in Figure 1. It was clearly observed that there was no significant change in propofol micellization efficiency when the weight ratio of propofol to mPEG-PLA was lower than 0.5, suggesting that to acquire the best propofol solubilization, the ratio of mPEG-PLA/Solutol HS15/propofol was fixed at 10/1/5 (w/w/w), and the weight ratio of propofol to mPEG-PLA should be approx. 0.5.


Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol.

Li X, Zhang Y, Fan Y, Zhou Y, Wang X, Fan C, Liu Y, Zhang Q - Nanoscale Res Lett (2011)

The effect of the weight ratio of propofol to polymer (expressed with mPEG-PLA) on encapsulation efficiency (EE). ns: p > 0.05 between any two groups; ** p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211339&req=5

Figure 1: The effect of the weight ratio of propofol to polymer (expressed with mPEG-PLA) on encapsulation efficiency (EE). ns: p > 0.05 between any two groups; ** p < 0.01.
Mentions: To find an optimal ratio of propofol to mPEG-PLA and Solutol HS15, which allowed for the best propofol solubilization, a series of propofol-loaded mixed micelles was prepared with different weight ratios of propofol to polymer (1/5, 1/4, 1/3, 1/2, 1/1, 2/1, expressed with mPEG-PLA) at the same molar ratio of Solutol HS15 to mPEG-PLA (5:5), and the propofol micellization efficiency by each of the micelle dispersions was determined. The effect of the weight ratio of propofol to mPEG-PLA on propofol micellization efficiency was shown in Figure 1. It was clearly observed that there was no significant change in propofol micellization efficiency when the weight ratio of propofol to mPEG-PLA was lower than 0.5, suggesting that to acquire the best propofol solubilization, the ratio of mPEG-PLA/Solutol HS15/propofol was fixed at 10/1/5 (w/w/w), and the weight ratio of propofol to mPEG-PLA should be approx. 0.5.

Bottom Line: The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion.No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation.The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, People's Republic of China. yanliu@bjmu.edu.cn.

ABSTRACT
Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

No MeSH data available.