Limits...
Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds.

Lee WH, Rhee CK, Koo J, Lee J, Jang SP, Choi SU, Lee KW, Bae HY, Lee GJ, Kim CK, Hong SW, Kwon Y, Kim D, Kim SH, Hwang KS, Kim HJ, Ha HJ, Lee SH, Choi CJ, Lee JH - Nanoscale Res Lett (2011)

Bottom Line: Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method.Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device.The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems.

View Article: PubMed Central - HTML - PubMed

Affiliation: Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA. suschoi@uic.edu.

ABSTRACT
Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance.

No MeSH data available.


Comparison of experimental thermal conductivity enhancements of 3.0 vol.% ZnO nanofluids with theoretical bounds of Nan et al. model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211320&req=5

Figure 8: Comparison of experimental thermal conductivity enhancements of 3.0 vol.% ZnO nanofluids with theoretical bounds of Nan et al. model.

Mentions: Figures 8 and 9 show comparisons of the experimental thermal conductivity enhancements of 3.0 and 5.5 vol.% ZnO nanofluids with the theoretical bounds of Nan et al. model. The interfacial thermal resistance used for the upper bound is 0 m2K/W and that for the lower bound is 10-8 m2K/W [52]. It can be seen clearly that all the thermal conductivity data lie above the bounds predicted by the model of Nan et al.


Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds.

Lee WH, Rhee CK, Koo J, Lee J, Jang SP, Choi SU, Lee KW, Bae HY, Lee GJ, Kim CK, Hong SW, Kwon Y, Kim D, Kim SH, Hwang KS, Kim HJ, Ha HJ, Lee SH, Choi CJ, Lee JH - Nanoscale Res Lett (2011)

Comparison of experimental thermal conductivity enhancements of 3.0 vol.% ZnO nanofluids with theoretical bounds of Nan et al. model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211320&req=5

Figure 8: Comparison of experimental thermal conductivity enhancements of 3.0 vol.% ZnO nanofluids with theoretical bounds of Nan et al. model.
Mentions: Figures 8 and 9 show comparisons of the experimental thermal conductivity enhancements of 3.0 and 5.5 vol.% ZnO nanofluids with the theoretical bounds of Nan et al. model. The interfacial thermal resistance used for the upper bound is 0 m2K/W and that for the lower bound is 10-8 m2K/W [52]. It can be seen clearly that all the thermal conductivity data lie above the bounds predicted by the model of Nan et al.

Bottom Line: Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method.Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device.The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems.

View Article: PubMed Central - HTML - PubMed

Affiliation: Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA. suschoi@uic.edu.

ABSTRACT
Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance.

No MeSH data available.