Limits...
Electrorheology of nanofiber suspensions.

Yin J, Zhao X - Nanoscale Res Lett (2011)

Bottom Line: Recent researches of using nanoparticles as the dispersal phase have led to new interest in the development of non-conventional ER fluids with improved performances.In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers.Our goal is to highlight the advantages of using anisotropic nanostructured materials as dispersal phases to improve ER performances.

View Article: PubMed Central - HTML - PubMed

Affiliation: Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China. jbyin@nwpu.edu.cn.

ABSTRACT
Electrorheological (ER) fluid, which can be transformed rapidly from a fluid-like state to a solid-like state under an external electric field, is considered to be one of the most important smart fluids. However, conventional ER fluids based on microparticles are subjected to challenges in practical applications due to the lack of versatile performances. Recent researches of using nanoparticles as the dispersal phase have led to new interest in the development of non-conventional ER fluids with improved performances. In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers. Our goal is to highlight the advantages of using anisotropic nanostructured materials as dispersal phases to improve ER performances.

No MeSH data available.


Related in: MedlinePlus

Silica-PANI fibers. (a) Schematic diagram of synthetic process of silica-PANI fibers and (b) SEM images of resulted silica-PANI fibers (inset: PANI fibers) [149].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211318&req=5

Figure 14: Silica-PANI fibers. (a) Schematic diagram of synthetic process of silica-PANI fibers and (b) SEM images of resulted silica-PANI fibers (inset: PANI fibers) [149].

Mentions: A silica nanoparticle decorated PANI nanofibers were also successfully synthesized as a dispersed phase of an ER fluid recently [149]. In this study, the PANI fibers obtained through interfacial polymerization were about 300 to 400 nm in diameter and 2 to 5 μm in length. Then the fibers were redispersed in ethanol containing tetraethyl orthosilicate (TEOS), and silica nanoparticles were formed on the surface of the fibers through a modified Stöber method (see Figure 14). Due to the use of the hydrous ammonia in the synthesis, however, the PANI fiber core was the dedoped emeraldine base-form in the resulted silica nanoparticle decorated PANI fibers. The ER properties of the suspensions based on pure PANI fibers and silica-PANI fibers were compared using a rotational rheometer under electric fields, demonstrating lower shear stress and slight different flow curves for the silica decorated PANI fiber suspension.


Electrorheology of nanofiber suspensions.

Yin J, Zhao X - Nanoscale Res Lett (2011)

Silica-PANI fibers. (a) Schematic diagram of synthetic process of silica-PANI fibers and (b) SEM images of resulted silica-PANI fibers (inset: PANI fibers) [149].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211318&req=5

Figure 14: Silica-PANI fibers. (a) Schematic diagram of synthetic process of silica-PANI fibers and (b) SEM images of resulted silica-PANI fibers (inset: PANI fibers) [149].
Mentions: A silica nanoparticle decorated PANI nanofibers were also successfully synthesized as a dispersed phase of an ER fluid recently [149]. In this study, the PANI fibers obtained through interfacial polymerization were about 300 to 400 nm in diameter and 2 to 5 μm in length. Then the fibers were redispersed in ethanol containing tetraethyl orthosilicate (TEOS), and silica nanoparticles were formed on the surface of the fibers through a modified Stöber method (see Figure 14). Due to the use of the hydrous ammonia in the synthesis, however, the PANI fiber core was the dedoped emeraldine base-form in the resulted silica nanoparticle decorated PANI fibers. The ER properties of the suspensions based on pure PANI fibers and silica-PANI fibers were compared using a rotational rheometer under electric fields, demonstrating lower shear stress and slight different flow curves for the silica decorated PANI fiber suspension.

Bottom Line: Recent researches of using nanoparticles as the dispersal phase have led to new interest in the development of non-conventional ER fluids with improved performances.In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers.Our goal is to highlight the advantages of using anisotropic nanostructured materials as dispersal phases to improve ER performances.

View Article: PubMed Central - HTML - PubMed

Affiliation: Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, China. jbyin@nwpu.edu.cn.

ABSTRACT
Electrorheological (ER) fluid, which can be transformed rapidly from a fluid-like state to a solid-like state under an external electric field, is considered to be one of the most important smart fluids. However, conventional ER fluids based on microparticles are subjected to challenges in practical applications due to the lack of versatile performances. Recent researches of using nanoparticles as the dispersal phase have led to new interest in the development of non-conventional ER fluids with improved performances. In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers. Our goal is to highlight the advantages of using anisotropic nanostructured materials as dispersal phases to improve ER performances.

No MeSH data available.


Related in: MedlinePlus