Limits...
Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol).

Jones M, Li CH, Afjeh A, Peterson G - Nanoscale Res Lett (2011)

Bottom Line: N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively.N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests.A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical, Industrial, and Manufacturing Engineering University of Toledo, Toledo, OH 43606, USA. calvin.li@villanova.edu.

ABSTRACT
An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

No MeSH data available.


Related in: MedlinePlus

Volumetric and gravimetric heat of combustion, ethenal with pure aluminum nanoadditives. (a) Volumetric HoC of Eth + n-Al samples at 20 atm, and (b) volumetric and gravimetric HoC of Eth + n-Al samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211307&req=5

Figure 3: Volumetric and gravimetric heat of combustion, ethenal with pure aluminum nanoadditives. (a) Volumetric HoC of Eth + n-Al samples at 20 atm, and (b) volumetric and gravimetric HoC of Eth + n-Al samples.

Mentions: It is important to note that there are errors inherent to using calorimeter-type systems, despite being a well-controlled instrument to measure thermodynamic properties. The three sources of uncertainty can be attributed to the volume fraction (sample mass and volume measurements), nonadiabaticity of the system, and the performance variation of the ethanol suspensions themselves. Uncertainties in volume fraction may be inclusive to the standard error in the samples graphed in Figures 3a,b and 4a,b. A small amount of radiation may have been introduced; in this case, a radiation correction of the calorimeter is used according to ASTM Designation D240 [30]. Furthermore, the experimental calculations included in this article do not discriminate between phase change and reaction enthalpies, measuring the higher heating value (HHV) of the system. It is assumed that the entire moisture generated in the ethanol combustion has condensed. However, it may be possible that moisture generated has not fully condensed to recover the heat of vaporization given up, within the timeframe of data collection. To be conservative, an additional ±2.5% error could be added.


Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol).

Jones M, Li CH, Afjeh A, Peterson G - Nanoscale Res Lett (2011)

Volumetric and gravimetric heat of combustion, ethenal with pure aluminum nanoadditives. (a) Volumetric HoC of Eth + n-Al samples at 20 atm, and (b) volumetric and gravimetric HoC of Eth + n-Al samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211307&req=5

Figure 3: Volumetric and gravimetric heat of combustion, ethenal with pure aluminum nanoadditives. (a) Volumetric HoC of Eth + n-Al samples at 20 atm, and (b) volumetric and gravimetric HoC of Eth + n-Al samples.
Mentions: It is important to note that there are errors inherent to using calorimeter-type systems, despite being a well-controlled instrument to measure thermodynamic properties. The three sources of uncertainty can be attributed to the volume fraction (sample mass and volume measurements), nonadiabaticity of the system, and the performance variation of the ethanol suspensions themselves. Uncertainties in volume fraction may be inclusive to the standard error in the samples graphed in Figures 3a,b and 4a,b. A small amount of radiation may have been introduced; in this case, a radiation correction of the calorimeter is used according to ASTM Designation D240 [30]. Furthermore, the experimental calculations included in this article do not discriminate between phase change and reaction enthalpies, measuring the higher heating value (HHV) of the system. It is assumed that the entire moisture generated in the ethanol combustion has condensed. However, it may be possible that moisture generated has not fully condensed to recover the heat of vaporization given up, within the timeframe of data collection. To be conservative, an additional ±2.5% error could be added.

Bottom Line: N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively.N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests.A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical, Industrial, and Manufacturing Engineering University of Toledo, Toledo, OH 43606, USA. calvin.li@villanova.edu.

ABSTRACT
An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

No MeSH data available.


Related in: MedlinePlus