Limits...
Defect-related hysteresis in nanotube-based nano-electromechanical systems.

Tsetseris L, Pantelides ST - Nanoscale Res Lett (2011)

Bottom Line: This fact can enable several applications of MWCNTs as nano-electromechanical systems (NEMS).Key defect-related effects, namely, sudden energy changes and hysteresis, are identified, and their relevance to a host of MWCNT-based NEMS is highlighted.The results also demonstrate the dependence of these effects on defect clustering and chirality of DWCNT shells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, National Technical University of Athens, GR-15780 Athens, Greece. leont@mail.ntua.gr.

ABSTRACT
The electronic properties of multi-walled carbon nanotubes (MWCNTs) depend on the positions of their walls with respect to neighboring shells. This fact can enable several applications of MWCNTs as nano-electromechanical systems (NEMS). In this article, we report the findings of a first-principles study on the stability and dynamics of point defects in double-walled carbon nanotubes (DWCNTs) and their role in the response of the host systems under inter-tube displacement. Key defect-related effects, namely, sudden energy changes and hysteresis, are identified, and their relevance to a host of MWCNT-based NEMS is highlighted. The results also demonstrate the dependence of these effects on defect clustering and chirality of DWCNT shells.

No MeSH data available.


Related in: MedlinePlus

Carbon SI in a (6,6)@(11,11) carbon nanotube: (a, d) C adatoms on the outer and inner shells, respectively, (b, c) inter-tube bridges.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211306&req=5

Figure 4: Carbon SI in a (6,6)@(11,11) carbon nanotube: (a, d) C adatoms on the outer and inner shells, respectively, (b, c) inter-tube bridges.

Mentions: We now turn our attention to the stability of point defects in the arm-chair (6,6)@(11,11) DWCNT. Figure 4 depicts several SI configurations, in particular, two structures of C adatoms on the outer and inner shells, and two geometries with inter-tube SI bridges. The most stable configuration is the one depicted in Figure 4b. If we set the energy of this structure equal to zero, then the energies of the geometries of Figure 4a, c, d are higher by 1.15, 0.64, and 0.60 eV, respectively.


Defect-related hysteresis in nanotube-based nano-electromechanical systems.

Tsetseris L, Pantelides ST - Nanoscale Res Lett (2011)

Carbon SI in a (6,6)@(11,11) carbon nanotube: (a, d) C adatoms on the outer and inner shells, respectively, (b, c) inter-tube bridges.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211306&req=5

Figure 4: Carbon SI in a (6,6)@(11,11) carbon nanotube: (a, d) C adatoms on the outer and inner shells, respectively, (b, c) inter-tube bridges.
Mentions: We now turn our attention to the stability of point defects in the arm-chair (6,6)@(11,11) DWCNT. Figure 4 depicts several SI configurations, in particular, two structures of C adatoms on the outer and inner shells, and two geometries with inter-tube SI bridges. The most stable configuration is the one depicted in Figure 4b. If we set the energy of this structure equal to zero, then the energies of the geometries of Figure 4a, c, d are higher by 1.15, 0.64, and 0.60 eV, respectively.

Bottom Line: This fact can enable several applications of MWCNTs as nano-electromechanical systems (NEMS).Key defect-related effects, namely, sudden energy changes and hysteresis, are identified, and their relevance to a host of MWCNT-based NEMS is highlighted.The results also demonstrate the dependence of these effects on defect clustering and chirality of DWCNT shells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, National Technical University of Athens, GR-15780 Athens, Greece. leont@mail.ntua.gr.

ABSTRACT
The electronic properties of multi-walled carbon nanotubes (MWCNTs) depend on the positions of their walls with respect to neighboring shells. This fact can enable several applications of MWCNTs as nano-electromechanical systems (NEMS). In this article, we report the findings of a first-principles study on the stability and dynamics of point defects in double-walled carbon nanotubes (DWCNTs) and their role in the response of the host systems under inter-tube displacement. Key defect-related effects, namely, sudden energy changes and hysteresis, are identified, and their relevance to a host of MWCNT-based NEMS is highlighted. The results also demonstrate the dependence of these effects on defect clustering and chirality of DWCNT shells.

No MeSH data available.


Related in: MedlinePlus