Limits...
High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid.

Wang Y, Liu J, Liu L, Sun DD - Nanoscale Res Lett (2011)

Bottom Line: The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis.Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10).The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore. JCLiu@ntu.edu.sg.

ABSTRACT
Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months.

No MeSH data available.


TGA curves of the GO, RGO-Pt-10, and RGO-NoPt-10.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211302&req=5

Figure 7: TGA curves of the GO, RGO-Pt-10, and RGO-NoPt-10.

Mentions: In Figure 7, the TGA curve of GO shows significant mass losses at 200 and 650°C due to the removal of oxygen-containing groups and carbon oxidation [40], respectively. These two major losses appear much smaller for RGO-Pt-10 and RGO-NoPt-10, which indicates the successful deoxygenation of GO at pH 10. The nearly parallel curves of RGO-Pt-10 and RGO-NoPt-10 suggest that the attachment of the Pt nanoparticles onto the graphene sheet did not lessen the thermal stability of the graphene sheets.


High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid.

Wang Y, Liu J, Liu L, Sun DD - Nanoscale Res Lett (2011)

TGA curves of the GO, RGO-Pt-10, and RGO-NoPt-10.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211302&req=5

Figure 7: TGA curves of the GO, RGO-Pt-10, and RGO-NoPt-10.
Mentions: In Figure 7, the TGA curve of GO shows significant mass losses at 200 and 650°C due to the removal of oxygen-containing groups and carbon oxidation [40], respectively. These two major losses appear much smaller for RGO-Pt-10 and RGO-NoPt-10, which indicates the successful deoxygenation of GO at pH 10. The nearly parallel curves of RGO-Pt-10 and RGO-NoPt-10 suggest that the attachment of the Pt nanoparticles onto the graphene sheet did not lessen the thermal stability of the graphene sheets.

Bottom Line: The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis.Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10).The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore. JCLiu@ntu.edu.sg.

ABSTRACT
Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months.

No MeSH data available.