Limits...
High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid.

Wang Y, Liu J, Liu L, Sun DD - Nanoscale Res Lett (2011)

Bottom Line: The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis.Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10).The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore. JCLiu@ntu.edu.sg.

ABSTRACT
Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months.

No MeSH data available.


A schematic illustration of the dispersed RGO-Pt hybrid materials assisted by OA molecules.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211302&req=5

Figure 1: A schematic illustration of the dispersed RGO-Pt hybrid materials assisted by OA molecules.

Mentions: In this article, the synthesis of the RGO-Pt hybrid materials is presented using sodium citrate as the reducing agent and the stabilizer at 80°C. To the best of our knowledge, this is the first report of sodium citrate being used for the reduction of GO. The resultant RGO-Pt hybrid materials are soluble in nonpolar organic solvents assisted by oleylamine (OA) (Figure 1), which will be extremely valuable for future catalytic applications. The detailed characterizations of the RGO-Pt hybrid materials carried out in this study provide us with an insight into the utilization of this new graphene-based material.


High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid.

Wang Y, Liu J, Liu L, Sun DD - Nanoscale Res Lett (2011)

A schematic illustration of the dispersed RGO-Pt hybrid materials assisted by OA molecules.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211302&req=5

Figure 1: A schematic illustration of the dispersed RGO-Pt hybrid materials assisted by OA molecules.
Mentions: In this article, the synthesis of the RGO-Pt hybrid materials is presented using sodium citrate as the reducing agent and the stabilizer at 80°C. To the best of our knowledge, this is the first report of sodium citrate being used for the reduction of GO. The resultant RGO-Pt hybrid materials are soluble in nonpolar organic solvents assisted by oleylamine (OA) (Figure 1), which will be extremely valuable for future catalytic applications. The detailed characterizations of the RGO-Pt hybrid materials carried out in this study provide us with an insight into the utilization of this new graphene-based material.

Bottom Line: The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis.Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10).The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore. JCLiu@ntu.edu.sg.

ABSTRACT
Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months.

No MeSH data available.