Limits...
Infrared thermometry study of nanofluid pool boiling phenomena.

Gerardi C, Buongiorno J, Hu LW, McKrell T - Nanoscale Res Lett (2011)

Bottom Line: The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat.Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces.Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave,, Cambridge, MA 02139 USA. jacopo@mit.edu.

ABSTRACT
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

No MeSH data available.


Related in: MedlinePlus

Total partitioned heat flux predicted by the RPI model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211291&req=5

Figure 10: Total partitioned heat flux predicted by the RPI model.

Mentions: A comparison of the nanofluids and water total partitioned boiling heat fluxes is presented in Figure 10. These curves represent the predicted boiling curves for each test using only the measured bubble parameters to calculate the heat flux at a given wall superheat. A clear deterioration of the nucleate boiling heat transfer coefficient in nanofluids is seen in agreement with the experimental boiling curve. The dominant heat flux found in the RPI model, the partitioned quench heat flux, q"q, goes as:(6)


Infrared thermometry study of nanofluid pool boiling phenomena.

Gerardi C, Buongiorno J, Hu LW, McKrell T - Nanoscale Res Lett (2011)

Total partitioned heat flux predicted by the RPI model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211291&req=5

Figure 10: Total partitioned heat flux predicted by the RPI model.
Mentions: A comparison of the nanofluids and water total partitioned boiling heat fluxes is presented in Figure 10. These curves represent the predicted boiling curves for each test using only the measured bubble parameters to calculate the heat flux at a given wall superheat. A clear deterioration of the nucleate boiling heat transfer coefficient in nanofluids is seen in agreement with the experimental boiling curve. The dominant heat flux found in the RPI model, the partitioned quench heat flux, q"q, goes as:(6)

Bottom Line: The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat.Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces.Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave,, Cambridge, MA 02139 USA. jacopo@mit.edu.

ABSTRACT
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

No MeSH data available.


Related in: MedlinePlus