Limits...
Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route.

Zhao B, Nan Z - Nanoscale Res Lett (2011)

Bottom Line: Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs.The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found.The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China. zdnan@yzu.edu.cn.

ABSTRACT
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

No MeSH data available.


Scheme of the formation processes of the as-produced Fe3O4@PPy NPs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211289&req=5

Figure 9: Scheme of the formation processes of the as-produced Fe3O4@PPy NPs.

Mentions: In the present conditions, the Na3cit acted as a reductant and a dispersant. The formation processes of the Fe3O4 NPs are listed in Equations 1-5. When the Fe3O4 NPs were produced, the Fe3+ ions were absorbed on the surface of the Fe3O4 NPs. The polymerizing reaction of the pyrrole monomers took place on the surface of the Fe3O4 NPs, in which the Fe3+ ions were used as an initiator. So the PPy coated the magnetite nanoparticles. The forming processes are shown in Figure 9. At the same time, these processes prevent the Fe3O4 growing. Thus, this polymerizing reaction can be applied to control the size of the as-prepared sample.(1)(2)(3)(4)(5)


Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route.

Zhao B, Nan Z - Nanoscale Res Lett (2011)

Scheme of the formation processes of the as-produced Fe3O4@PPy NPs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211289&req=5

Figure 9: Scheme of the formation processes of the as-produced Fe3O4@PPy NPs.
Mentions: In the present conditions, the Na3cit acted as a reductant and a dispersant. The formation processes of the Fe3O4 NPs are listed in Equations 1-5. When the Fe3O4 NPs were produced, the Fe3+ ions were absorbed on the surface of the Fe3O4 NPs. The polymerizing reaction of the pyrrole monomers took place on the surface of the Fe3O4 NPs, in which the Fe3+ ions were used as an initiator. So the PPy coated the magnetite nanoparticles. The forming processes are shown in Figure 9. At the same time, these processes prevent the Fe3O4 growing. Thus, this polymerizing reaction can be applied to control the size of the as-prepared sample.(1)(2)(3)(4)(5)

Bottom Line: Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs.The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found.The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China. zdnan@yzu.edu.cn.

ABSTRACT
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

No MeSH data available.