Limits...
Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route.

Zhao B, Nan Z - Nanoscale Res Lett (2011)

Bottom Line: Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs.The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found.The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China. zdnan@yzu.edu.cn.

ABSTRACT
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

No MeSH data available.


XRD diffraction patterns of the Fe3O4@PPy deposits prepared under different amounts of pyrrole monomer at 160°C: (a) 0.1 mL, (b) 0.3 mL, (c) 0.5 mL.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211289&req=5

Figure 2: XRD diffraction patterns of the Fe3O4@PPy deposits prepared under different amounts of pyrrole monomer at 160°C: (a) 0.1 mL, (b) 0.3 mL, (c) 0.5 mL.

Mentions: Figures 2 shows the XRD patterns of the products prepared with different amounts of pyrrole monomer. The XRD pattern of the sample produced without pyrrole is shown in Additional file 1, Figure S1. The broad peak appears at a 2θ value of 20°-30° in Figure 2c as the arrow's direction indexed PPy. No broad peak was clearly found in Figure 2a,b because of the small amount of pyrrole monomer added into the reaction system and the strong peaks of Fe3O4. Other major peaks at about 30°, 35°, 43°, 53°, 57°, and 62° were observed and could be assigned to diffraction from the (220), (311), (400), (422), (511), and (440) planes of Fe3O4 (JCPDS card no.79-0418), respectively [15]. Nevertheless, as magnetite (Fe3O4) and maghemite (γ-Fe2O3) havethe inverse spinel structure and have very similar XRD patterns, precise studies on the phase composition of the as-synthesized products were required. Using the formula 2d*sinθ = n*λ to calculate d, and compare to the standard numerical value [16], these as-prepared products are all magnetite (Fe3O4). These data are listed in Table 1.


Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route.

Zhao B, Nan Z - Nanoscale Res Lett (2011)

XRD diffraction patterns of the Fe3O4@PPy deposits prepared under different amounts of pyrrole monomer at 160°C: (a) 0.1 mL, (b) 0.3 mL, (c) 0.5 mL.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211289&req=5

Figure 2: XRD diffraction patterns of the Fe3O4@PPy deposits prepared under different amounts of pyrrole monomer at 160°C: (a) 0.1 mL, (b) 0.3 mL, (c) 0.5 mL.
Mentions: Figures 2 shows the XRD patterns of the products prepared with different amounts of pyrrole monomer. The XRD pattern of the sample produced without pyrrole is shown in Additional file 1, Figure S1. The broad peak appears at a 2θ value of 20°-30° in Figure 2c as the arrow's direction indexed PPy. No broad peak was clearly found in Figure 2a,b because of the small amount of pyrrole monomer added into the reaction system and the strong peaks of Fe3O4. Other major peaks at about 30°, 35°, 43°, 53°, 57°, and 62° were observed and could be assigned to diffraction from the (220), (311), (400), (422), (511), and (440) planes of Fe3O4 (JCPDS card no.79-0418), respectively [15]. Nevertheless, as magnetite (Fe3O4) and maghemite (γ-Fe2O3) havethe inverse spinel structure and have very similar XRD patterns, precise studies on the phase composition of the as-synthesized products were required. Using the formula 2d*sinθ = n*λ to calculate d, and compare to the standard numerical value [16], these as-prepared products are all magnetite (Fe3O4). These data are listed in Table 1.

Bottom Line: Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs.The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found.The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China. zdnan@yzu.edu.cn.

ABSTRACT
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

No MeSH data available.