Limits...
Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes.

Cieslinski JT, Kaczmarczyk TZ - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight.The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater.The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Ecoengineering and Process Apparatus, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland. jcieslin@pg.gda.pl.

ABSTRACT
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.

No MeSH data available.


Related in: MedlinePlus

Effective thermal conductivity of water-Al2O3 and water-Cu nanofluids at ambient temperature and various concentrations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211278&req=5

Figure 9: Effective thermal conductivity of water-Al2O3 and water-Cu nanofluids at ambient temperature and various concentrations.

Mentions: The thermal conductivity of the nanofluids was measured using transient hot-wire method (KD2 Pro by Decagon Device Inc.). The results for measurements at ambient temperature range between 18 and 20°C are shown in Figure 9. Each data point is an average value of six measurements and the measurement error ranges within ± 5%. It can be seen in Figure 9 that the effective thermal conductivity of nanofluids increases considerably against mass concentration, and an enhancement of approximately 10% and 90% are achieved at a particle concentration of 1% by weight for water-Al2O3 and water-Cu nanofluids, respectively. Reasonable agreement between present data and Wen and Ding [7] results for water-Al2O3 nanofluids can be observed. It is difficult to compare present data of thermal conductivity of water-Cu nanofluids with selected published results because of big scatter of literature data [24].


Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes.

Cieslinski JT, Kaczmarczyk TZ - Nanoscale Res Lett (2011)

Effective thermal conductivity of water-Al2O3 and water-Cu nanofluids at ambient temperature and various concentrations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211278&req=5

Figure 9: Effective thermal conductivity of water-Al2O3 and water-Cu nanofluids at ambient temperature and various concentrations.
Mentions: The thermal conductivity of the nanofluids was measured using transient hot-wire method (KD2 Pro by Decagon Device Inc.). The results for measurements at ambient temperature range between 18 and 20°C are shown in Figure 9. Each data point is an average value of six measurements and the measurement error ranges within ± 5%. It can be seen in Figure 9 that the effective thermal conductivity of nanofluids increases considerably against mass concentration, and an enhancement of approximately 10% and 90% are achieved at a particle concentration of 1% by weight for water-Al2O3 and water-Cu nanofluids, respectively. Reasonable agreement between present data and Wen and Ding [7] results for water-Al2O3 nanofluids can be observed. It is difficult to compare present data of thermal conductivity of water-Cu nanofluids with selected published results because of big scatter of literature data [24].

Bottom Line: Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight.The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater.The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Ecoengineering and Process Apparatus, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland. jcieslin@pg.gda.pl.

ABSTRACT
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.

No MeSH data available.


Related in: MedlinePlus