Limits...
Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes.

Cieslinski JT, Kaczmarczyk TZ - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight.The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater.The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Ecoengineering and Process Apparatus, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland. jcieslin@pg.gda.pl.

ABSTRACT
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.

No MeSH data available.


Related in: MedlinePlus

TEM of agglomerated nano-aluminium oxide powder.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211278&req=5

Figure 5: TEM of agglomerated nano-aluminium oxide powder.

Mentions: In the present study, Al2O3 an Cu were used as nanoparticles while distilled, deionized water was used as a base fluid. Nanofluids with different concentrations were prepared for the experiments. Nanoparticles of the required amount and base fluid were mixed together. Alumina (Al2O3) nanoparticles, of spherical form have diameter from 5 to 250 nm; their mean diameter was estimated to be 47 nm according to the deliverer (Sigma-Aldrich Co., Poznan, Poland). Copper nanoparticles, of spherical form have diameter from 7 to 257 nm; their mean diameter was estimated to be 48 nm according to the deliverer (Sigma-Aldrich Co., Poznan, Poland). The alumina and copper particle size distributions are shown in Figures 3 and 4, respectively. In the powder state, the nanoparticles form loose agglomerates of micrometer size as shown by transmission electron microscopy (TEM) - Figures 5 and 6. However, it has been observed that the agglomerates breakdown to a considerable extent to produce smaller size particles and agglomerates when dispersed in water.


Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes.

Cieslinski JT, Kaczmarczyk TZ - Nanoscale Res Lett (2011)

TEM of agglomerated nano-aluminium oxide powder.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211278&req=5

Figure 5: TEM of agglomerated nano-aluminium oxide powder.
Mentions: In the present study, Al2O3 an Cu were used as nanoparticles while distilled, deionized water was used as a base fluid. Nanofluids with different concentrations were prepared for the experiments. Nanoparticles of the required amount and base fluid were mixed together. Alumina (Al2O3) nanoparticles, of spherical form have diameter from 5 to 250 nm; their mean diameter was estimated to be 47 nm according to the deliverer (Sigma-Aldrich Co., Poznan, Poland). Copper nanoparticles, of spherical form have diameter from 7 to 257 nm; their mean diameter was estimated to be 48 nm according to the deliverer (Sigma-Aldrich Co., Poznan, Poland). The alumina and copper particle size distributions are shown in Figures 3 and 4, respectively. In the powder state, the nanoparticles form loose agglomerates of micrometer size as shown by transmission electron microscopy (TEM) - Figures 5 and 6. However, it has been observed that the agglomerates breakdown to a considerable extent to produce smaller size particles and agglomerates when dispersed in water.

Bottom Line: Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight.The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater.The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Ecoengineering and Process Apparatus, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland. jcieslin@pg.gda.pl.

ABSTRACT
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.

No MeSH data available.


Related in: MedlinePlus