Limits...
Particle size effects in the thermal conductivity enhancement of copper-based nanofluids.

Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O - Nanoscale Res Lett (2011)

Bottom Line: The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB).We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS.These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

View Article: PubMed Central - HTML - PubMed

Affiliation: Kazuo Inamori School of Engineering, Alfred University, 2 Pine Street, Alfred, NY 14802, USA. graeve@alfred.edu.

ABSTRACT
We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB). Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS), and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

No MeSH data available.


Dynamic thermal conductivity data. For de-ionized water and the 0.55 vol.% and 1.0 vol.% nanofluids prepared with the oleic acid- and CTAB-prepared copper powders.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211274&req=5

Figure 3: Dynamic thermal conductivity data. For de-ionized water and the 0.55 vol.% and 1.0 vol.% nanofluids prepared with the oleic acid- and CTAB-prepared copper powders.

Mentions: The measured thermal conductivity data for the nanofluids of 0.55 and 1.0 vol.% oleic acid- and CTAB-prepared copper powders is illustrated in Figure 3. The thermal conductivity of the base fluid (i.e., de-ionized water) was measured for comparison with the nanofluids and is marked in the figure. For the 0.55 vol.% copper nanofluids, the thermal conductivity was enhanced from a value of 0.60 W/m·K for pure water to 0.73 and 0.72 W/m·K for the oleic acid- and CTAB-prepared powders, respectively, an enhancement of approximately 22% over water. The 1.0 vol.% nanofluid with CTAB-prepared copper powders exhibited a thermal conductivity of 0.89 W/m·K, which corresponds to a 48% enhancement in thermal conductivity over water. The 1.0 vol.% nanofluid with oleic acid-prepared copper powders settled too rapidly during the measurement, so the thermal conductivity was not obtained.


Particle size effects in the thermal conductivity enhancement of copper-based nanofluids.

Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O - Nanoscale Res Lett (2011)

Dynamic thermal conductivity data. For de-ionized water and the 0.55 vol.% and 1.0 vol.% nanofluids prepared with the oleic acid- and CTAB-prepared copper powders.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211274&req=5

Figure 3: Dynamic thermal conductivity data. For de-ionized water and the 0.55 vol.% and 1.0 vol.% nanofluids prepared with the oleic acid- and CTAB-prepared copper powders.
Mentions: The measured thermal conductivity data for the nanofluids of 0.55 and 1.0 vol.% oleic acid- and CTAB-prepared copper powders is illustrated in Figure 3. The thermal conductivity of the base fluid (i.e., de-ionized water) was measured for comparison with the nanofluids and is marked in the figure. For the 0.55 vol.% copper nanofluids, the thermal conductivity was enhanced from a value of 0.60 W/m·K for pure water to 0.73 and 0.72 W/m·K for the oleic acid- and CTAB-prepared powders, respectively, an enhancement of approximately 22% over water. The 1.0 vol.% nanofluid with CTAB-prepared copper powders exhibited a thermal conductivity of 0.89 W/m·K, which corresponds to a 48% enhancement in thermal conductivity over water. The 1.0 vol.% nanofluid with oleic acid-prepared copper powders settled too rapidly during the measurement, so the thermal conductivity was not obtained.

Bottom Line: The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB).We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS.These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

View Article: PubMed Central - HTML - PubMed

Affiliation: Kazuo Inamori School of Engineering, Alfred University, 2 Pine Street, Alfred, NY 14802, USA. graeve@alfred.edu.

ABSTRACT
We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB). Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS), and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

No MeSH data available.