Limits...
Observation of strong anisotropic forbidden transitions in (001) InGaAs/GaAs single-quantum well by reflectance-difference spectroscopy and its behavior under uniaxial strain.

Yu JL, Chen YH, Tang CG, Jiang C, Ye XL - Nanoscale Res Lett (2011)

Bottom Line: The strong anisotropic forbidden transition has been observed in a series of InGaAs/GaAs single-quantum well with well width ranging between 3 nm and 7 nm at 80 K.Numerical calculations within the envelope function framework have been performed to analyze the origin of the optical anisotropic forbidden transition.It is found that the optical anisotropy of this transition can be mainly attributed to indium segregation effect.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P,O, Box 912, Beijing 100083, People's Republic of China. yhchen@semi.ac.cn.

ABSTRACT
The strong anisotropic forbidden transition has been observed in a series of InGaAs/GaAs single-quantum well with well width ranging between 3 nm and 7 nm at 80 K. Numerical calculations within the envelope function framework have been performed to analyze the origin of the optical anisotropic forbidden transition. It is found that the optical anisotropy of this transition can be mainly attributed to indium segregation effect. The effect of uniaxial strain on in-plane optical anisotropy (IPOA) is also investigated. The IPOA of the forbidden transition changes little with strain, while that of the allowed transition shows a linear dependence on strain.PACS 78.66.Fd, 78.20.Bh, 78.20.Fm.

No MeSH data available.


Related in: MedlinePlus

Calculated anisotropic transition probability ΔM and average transition probability M of InxGa1-xAs/GaAs QW with well width 3, 5 and 7 nm, respectively. The optical anisotropy is induced by (a) anisotropic interface structures, (b) anisotropic strain effect, (c) In segregation effect and (d) both anisotropic interface structures and In segregation effect. The vertical lines indicate the energy positions of the transitions 1e1hh (solid) and 1e1lh (dotted). And the vertical arrows indicate the positions of transitions 1e2hh (upward arrows), leh* (downward arrows), and 2e2hh (downward arrows).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211267&req=5

Figure 5: Calculated anisotropic transition probability ΔM and average transition probability M of InxGa1-xAs/GaAs QW with well width 3, 5 and 7 nm, respectively. The optical anisotropy is induced by (a) anisotropic interface structures, (b) anisotropic strain effect, (c) In segregation effect and (d) both anisotropic interface structures and In segregation effect. The vertical lines indicate the energy positions of the transitions 1e1hh (solid) and 1e1lh (dotted). And the vertical arrows indicate the positions of transitions 1e2hh (upward arrows), leh* (downward arrows), and 2e2hh (downward arrows).

Mentions: If there is only anisotropic interface structures in the interface, i.e., l = 0, ϵxy = 0, we can adopt P1 = P0, and fit P2 to the experimental data. The fitting results are shown in Figure 5a. The P2 value adopted is 775 meV Å. It can be seen that, only the allowed transition presents. Therefore, the observed anisotropic forbidden transition cannot be attributed to anisotropic interface structures.


Observation of strong anisotropic forbidden transitions in (001) InGaAs/GaAs single-quantum well by reflectance-difference spectroscopy and its behavior under uniaxial strain.

Yu JL, Chen YH, Tang CG, Jiang C, Ye XL - Nanoscale Res Lett (2011)

Calculated anisotropic transition probability ΔM and average transition probability M of InxGa1-xAs/GaAs QW with well width 3, 5 and 7 nm, respectively. The optical anisotropy is induced by (a) anisotropic interface structures, (b) anisotropic strain effect, (c) In segregation effect and (d) both anisotropic interface structures and In segregation effect. The vertical lines indicate the energy positions of the transitions 1e1hh (solid) and 1e1lh (dotted). And the vertical arrows indicate the positions of transitions 1e2hh (upward arrows), leh* (downward arrows), and 2e2hh (downward arrows).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211267&req=5

Figure 5: Calculated anisotropic transition probability ΔM and average transition probability M of InxGa1-xAs/GaAs QW with well width 3, 5 and 7 nm, respectively. The optical anisotropy is induced by (a) anisotropic interface structures, (b) anisotropic strain effect, (c) In segregation effect and (d) both anisotropic interface structures and In segregation effect. The vertical lines indicate the energy positions of the transitions 1e1hh (solid) and 1e1lh (dotted). And the vertical arrows indicate the positions of transitions 1e2hh (upward arrows), leh* (downward arrows), and 2e2hh (downward arrows).
Mentions: If there is only anisotropic interface structures in the interface, i.e., l = 0, ϵxy = 0, we can adopt P1 = P0, and fit P2 to the experimental data. The fitting results are shown in Figure 5a. The P2 value adopted is 775 meV Å. It can be seen that, only the allowed transition presents. Therefore, the observed anisotropic forbidden transition cannot be attributed to anisotropic interface structures.

Bottom Line: The strong anisotropic forbidden transition has been observed in a series of InGaAs/GaAs single-quantum well with well width ranging between 3 nm and 7 nm at 80 K.Numerical calculations within the envelope function framework have been performed to analyze the origin of the optical anisotropic forbidden transition.It is found that the optical anisotropy of this transition can be mainly attributed to indium segregation effect.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P,O, Box 912, Beijing 100083, People's Republic of China. yhchen@semi.ac.cn.

ABSTRACT
The strong anisotropic forbidden transition has been observed in a series of InGaAs/GaAs single-quantum well with well width ranging between 3 nm and 7 nm at 80 K. Numerical calculations within the envelope function framework have been performed to analyze the origin of the optical anisotropic forbidden transition. It is found that the optical anisotropy of this transition can be mainly attributed to indium segregation effect. The effect of uniaxial strain on in-plane optical anisotropy (IPOA) is also investigated. The IPOA of the forbidden transition changes little with strain, while that of the allowed transition shows a linear dependence on strain.PACS 78.66.Fd, 78.20.Bh, 78.20.Fm.

No MeSH data available.


Related in: MedlinePlus