Limits...
Ordered GeSi nanorings grown on patterned Si (001) substrates.

Ma Y, Cui J, Fan Y, Zhong Z, Jiang Z - Nanoscale Res Lett (2011)

Bottom Line: An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated.The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes.Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China. tsuijian@gmail.com.

ABSTRACT
An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated. Long-range ordered GeSi nanorings with 430 nm period were grown on patterned Si (001) substrates by molecular beam epitaxy. The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes. Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

No MeSH data available.


AFM surface morphologies of ordered nanorings with 2 nm Si capping. (a) Post-annealing for 0.5 h at 610°C. (b) Post-annealing for 1 h at 610°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211261&req=5

Figure 7: AFM surface morphologies of ordered nanorings with 2 nm Si capping. (a) Post-annealing for 0.5 h at 610°C. (b) Post-annealing for 1 h at 610°C.

Mentions: By Si capping at 610°C, 〈L 〉of transformed nanor-ings is 175 nm, which is relatively smaller than that of QDs (208 nm). 〈L〉 decreases to 165 nm when the growth temperature of Si capping increases to 640°C. ΔL also decreases from 24.3 to 21.8 nm. Long-term annealing can help the transformation from QDs to nanorings [24]. By annealing the sample shown in Figure 5b at 610°C for 30 min in high vacuum (10-7 Torr), we found that 32% of QDs were converted into nanorings, as shown in Figure 7a. The other QDs disappeared by mass migration and no trenches were observed around the nanorings. The mean lateral size (163 nm) is close to that by capping at 640°C. ΔL is as small as 15.9 nm. It can be seen that both high growth temperature and long-term annealing can improve the size uniformity. However, if the annealing time was extended to 60 min, the mass migration and SiGe intermixing effects resulted in the appearance of super domes, as shown in Figure 7b. In this case, no nanorings existed any more.


Ordered GeSi nanorings grown on patterned Si (001) substrates.

Ma Y, Cui J, Fan Y, Zhong Z, Jiang Z - Nanoscale Res Lett (2011)

AFM surface morphologies of ordered nanorings with 2 nm Si capping. (a) Post-annealing for 0.5 h at 610°C. (b) Post-annealing for 1 h at 610°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211261&req=5

Figure 7: AFM surface morphologies of ordered nanorings with 2 nm Si capping. (a) Post-annealing for 0.5 h at 610°C. (b) Post-annealing for 1 h at 610°C.
Mentions: By Si capping at 610°C, 〈L 〉of transformed nanor-ings is 175 nm, which is relatively smaller than that of QDs (208 nm). 〈L〉 decreases to 165 nm when the growth temperature of Si capping increases to 640°C. ΔL also decreases from 24.3 to 21.8 nm. Long-term annealing can help the transformation from QDs to nanorings [24]. By annealing the sample shown in Figure 5b at 610°C for 30 min in high vacuum (10-7 Torr), we found that 32% of QDs were converted into nanorings, as shown in Figure 7a. The other QDs disappeared by mass migration and no trenches were observed around the nanorings. The mean lateral size (163 nm) is close to that by capping at 640°C. ΔL is as small as 15.9 nm. It can be seen that both high growth temperature and long-term annealing can improve the size uniformity. However, if the annealing time was extended to 60 min, the mass migration and SiGe intermixing effects resulted in the appearance of super domes, as shown in Figure 7b. In this case, no nanorings existed any more.

Bottom Line: An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated.The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes.Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China. tsuijian@gmail.com.

ABSTRACT
An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated. Long-range ordered GeSi nanorings with 430 nm period were grown on patterned Si (001) substrates by molecular beam epitaxy. The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes. Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

No MeSH data available.