Limits...
Ordered GeSi nanorings grown on patterned Si (001) substrates.

Ma Y, Cui J, Fan Y, Zhong Z, Jiang Z - Nanoscale Res Lett (2011)

Bottom Line: An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated.The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes.Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China. tsuijian@gmail.com.

ABSTRACT
An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated. Long-range ordered GeSi nanorings with 430 nm period were grown on patterned Si (001) substrates by molecular beam epitaxy. The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes. Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

No MeSH data available.


3D AFM images of (a) ordered GeSi QDs and (b)ordered GeSi nanorings.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211261&req=5

Figure 3: 3D AFM images of (a) ordered GeSi QDs and (b)ordered GeSi nanorings.

Mentions: The typical sample growth procedures are as following. After the hydrogen thermal desorption at 860°C for 3 min, a 130 nm thick Si buffer layer was deposited while increasing the growth temperature gradually from 400°C to 500°C to remove surface damages induced by etching [20]. The QD layer was grown by depositing 5 ML Ge while increasing the growth temperature from 500 to 640°C and additional 7 ML Ge at 640°C [21]. The substrate temperature was then decreased to 500°C. A 20 nm thick Si spacer layer was deposited while increasing the growth temperature from 500 to 640°C [22]. To grow nanorings, first, an 8 ML Ge layer was deposited at 640°C to form ordered dome-shaped GeSi QDs, as shown in Figure 3a. Secondly, a 3 nm thick Si capping layer was deposited at the same growth temperature. After growth, the sample was cooled down to room temperature immediately. It was found that the ordered dome-shaped GeSi QDs transformed into ordered GeSi nanorings after the Si capping process, as shown in Figure 3b. The surface morphology of the ordered nanorings was investigated by atomic force microscopy (AFM) (Veeco DI Multimode V SPM and Solver P47-MDT). The post-annealing treatment was done in a high vacuum annealing system (KMT GSL 1600×).


Ordered GeSi nanorings grown on patterned Si (001) substrates.

Ma Y, Cui J, Fan Y, Zhong Z, Jiang Z - Nanoscale Res Lett (2011)

3D AFM images of (a) ordered GeSi QDs and (b)ordered GeSi nanorings.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211261&req=5

Figure 3: 3D AFM images of (a) ordered GeSi QDs and (b)ordered GeSi nanorings.
Mentions: The typical sample growth procedures are as following. After the hydrogen thermal desorption at 860°C for 3 min, a 130 nm thick Si buffer layer was deposited while increasing the growth temperature gradually from 400°C to 500°C to remove surface damages induced by etching [20]. The QD layer was grown by depositing 5 ML Ge while increasing the growth temperature from 500 to 640°C and additional 7 ML Ge at 640°C [21]. The substrate temperature was then decreased to 500°C. A 20 nm thick Si spacer layer was deposited while increasing the growth temperature from 500 to 640°C [22]. To grow nanorings, first, an 8 ML Ge layer was deposited at 640°C to form ordered dome-shaped GeSi QDs, as shown in Figure 3a. Secondly, a 3 nm thick Si capping layer was deposited at the same growth temperature. After growth, the sample was cooled down to room temperature immediately. It was found that the ordered dome-shaped GeSi QDs transformed into ordered GeSi nanorings after the Si capping process, as shown in Figure 3b. The surface morphology of the ordered nanorings was investigated by atomic force microscopy (AFM) (Veeco DI Multimode V SPM and Solver P47-MDT). The post-annealing treatment was done in a high vacuum annealing system (KMT GSL 1600×).

Bottom Line: An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated.The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes.Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China. tsuijian@gmail.com.

ABSTRACT
An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated. Long-range ordered GeSi nanorings with 430 nm period were grown on patterned Si (001) substrates by molecular beam epitaxy. The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes. Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings.PACS code1·PACS code2·moreMathematics Subject Classification (2000) MSC code1·MSC code2·more.

No MeSH data available.