Limits...
Light-emitting diodes enhanced by localized surface plasmon resonance.

Gu X, Qiu T, Zhang W, Chu PK - Nanoscale Res Lett (2011)

Bottom Line: The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology.In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques.The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, Southeast University, Nanjing 211189, People's Republic of China. tqiu@seu.edu.cn.

ABSTRACT
Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

No MeSH data available.


LED-based and LED-plus-phosphor-based approaches for white light sources implemented as di-, tri-, and tetrachromatic sources. The trichromatic approaches can provide a reasonable trade-off between color and luminous source efficiency. Reproduced from [72]. Copyright the American Association for the Advancement of Science, 2005.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211255&req=5

Figure 9: LED-based and LED-plus-phosphor-based approaches for white light sources implemented as di-, tri-, and tetrachromatic sources. The trichromatic approaches can provide a reasonable trade-off between color and luminous source efficiency. Reproduced from [72]. Copyright the American Association for the Advancement of Science, 2005.

Mentions: Advantages such as energy saving, low radiation, shock resistance, and spectral power tunability over fluorescent and incandescent light sources have propelled the commercialization of solid-state lighting devices containing semiconductors as the light emitters [72]. Specifically, recent realization of LEDs with fluorescent tube efficiency makes the prospect of solid-state lighting brighter. Some common strategies to make white light LEDs are illustrated in Figure 9. One method is to combine emitters with different colors in the device and adjust the spectral composition according to practical needs. Alternatively, phosphors and certain semiconductor NCs such as CdSe/ZnS core/shell quantum dots are known to be capable of effectively converting high-energy photons to low-energy ones, and consequently, white light sources can be produced. In both strategies, the use of a blue or UV LED is indispensable. However, typical inorganic blue light emitters based on GaN/InGaN QWs usually have a low IQE due to the relatively poor crystal quality. Since LSPR can introduce efficiency enhancement when the original IQE is low, there is big interest in using LSPR to increase the overall efficiency of short-wavelength blue and green LEDs, as discussed in previous sections.


Light-emitting diodes enhanced by localized surface plasmon resonance.

Gu X, Qiu T, Zhang W, Chu PK - Nanoscale Res Lett (2011)

LED-based and LED-plus-phosphor-based approaches for white light sources implemented as di-, tri-, and tetrachromatic sources. The trichromatic approaches can provide a reasonable trade-off between color and luminous source efficiency. Reproduced from [72]. Copyright the American Association for the Advancement of Science, 2005.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211255&req=5

Figure 9: LED-based and LED-plus-phosphor-based approaches for white light sources implemented as di-, tri-, and tetrachromatic sources. The trichromatic approaches can provide a reasonable trade-off between color and luminous source efficiency. Reproduced from [72]. Copyright the American Association for the Advancement of Science, 2005.
Mentions: Advantages such as energy saving, low radiation, shock resistance, and spectral power tunability over fluorescent and incandescent light sources have propelled the commercialization of solid-state lighting devices containing semiconductors as the light emitters [72]. Specifically, recent realization of LEDs with fluorescent tube efficiency makes the prospect of solid-state lighting brighter. Some common strategies to make white light LEDs are illustrated in Figure 9. One method is to combine emitters with different colors in the device and adjust the spectral composition according to practical needs. Alternatively, phosphors and certain semiconductor NCs such as CdSe/ZnS core/shell quantum dots are known to be capable of effectively converting high-energy photons to low-energy ones, and consequently, white light sources can be produced. In both strategies, the use of a blue or UV LED is indispensable. However, typical inorganic blue light emitters based on GaN/InGaN QWs usually have a low IQE due to the relatively poor crystal quality. Since LSPR can introduce efficiency enhancement when the original IQE is low, there is big interest in using LSPR to increase the overall efficiency of short-wavelength blue and green LEDs, as discussed in previous sections.

Bottom Line: The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology.In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques.The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, Southeast University, Nanjing 211189, People's Republic of China. tqiu@seu.edu.cn.

ABSTRACT
Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

No MeSH data available.