Limits...
Light-emitting diodes enhanced by localized surface plasmon resonance.

Gu X, Qiu T, Zhang W, Chu PK - Nanoscale Res Lett (2011)

Bottom Line: The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology.In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques.The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, Southeast University, Nanjing 211189, People's Republic of China. tqiu@seu.edu.cn.

ABSTRACT
Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

No MeSH data available.


General procedure of EBL. Reproduced from [50]. Copyright American Chemical Society, 1997.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211255&req=5

Figure 6: General procedure of EBL. Reproduced from [50]. Copyright American Chemical Society, 1997.

Mentions: EBL is often used to fabricate sub-100-nm monodispersed metallic NPs. Current state-of-the-art equipment boasts a resolution of < 10 nm that is small enough for LSPR-enhanced LEDs. The general procedures to produce metallic NPs are illustrated in Figure 6, and more details can be found elsewhere [49-52]. EBL can be utilized to produce metallic NPs exhibiting enhanced light emission efficiency. For example, metal-enhanced fluorescence has been reported by Pompa et al. [53]. Here, EBL is used to fabricate highly ordered 100- to 200-nm-wide triangular gold prisms on planar substrates, and pictures of one representative sample are depicted in Figures 7a,b,c. Uniform CdSe/ZnS core/shell nanocrystals [NCs] dispersed in a polymethylmethacrylate [PMMA] matrix to control the distance between the NCs and gold NPs are spin-coated onto the substrate, and the resulting enhancement is as high as 30-fold, as demonstrated by a comparison of the fluorescence with and without Au NPs in Figure 7d. Besides CdSe/ZnS NCs, luminescence from Si QDs increases by a factor of 7 [54]. After cleaning the Si QD-doped quartz in a 5:1:1 H2O/H2O2/NH4OH solution, EBL is used to pattern 100 × 100-μm circular arrays on two layers of PMMA covered by Ge. After removing the Ge and developing the resist, the Si and Ag layers are deposited by vacuum deposition, and following lift-off of the remaining PMMA, only Ag islands are left on the quartz.


Light-emitting diodes enhanced by localized surface plasmon resonance.

Gu X, Qiu T, Zhang W, Chu PK - Nanoscale Res Lett (2011)

General procedure of EBL. Reproduced from [50]. Copyright American Chemical Society, 1997.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211255&req=5

Figure 6: General procedure of EBL. Reproduced from [50]. Copyright American Chemical Society, 1997.
Mentions: EBL is often used to fabricate sub-100-nm monodispersed metallic NPs. Current state-of-the-art equipment boasts a resolution of < 10 nm that is small enough for LSPR-enhanced LEDs. The general procedures to produce metallic NPs are illustrated in Figure 6, and more details can be found elsewhere [49-52]. EBL can be utilized to produce metallic NPs exhibiting enhanced light emission efficiency. For example, metal-enhanced fluorescence has been reported by Pompa et al. [53]. Here, EBL is used to fabricate highly ordered 100- to 200-nm-wide triangular gold prisms on planar substrates, and pictures of one representative sample are depicted in Figures 7a,b,c. Uniform CdSe/ZnS core/shell nanocrystals [NCs] dispersed in a polymethylmethacrylate [PMMA] matrix to control the distance between the NCs and gold NPs are spin-coated onto the substrate, and the resulting enhancement is as high as 30-fold, as demonstrated by a comparison of the fluorescence with and without Au NPs in Figure 7d. Besides CdSe/ZnS NCs, luminescence from Si QDs increases by a factor of 7 [54]. After cleaning the Si QD-doped quartz in a 5:1:1 H2O/H2O2/NH4OH solution, EBL is used to pattern 100 × 100-μm circular arrays on two layers of PMMA covered by Ge. After removing the Ge and developing the resist, the Si and Ag layers are deposited by vacuum deposition, and following lift-off of the remaining PMMA, only Ag islands are left on the quartz.

Bottom Line: The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology.In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques.The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, Southeast University, Nanjing 211189, People's Republic of China. tqiu@seu.edu.cn.

ABSTRACT
Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

No MeSH data available.