Limits...
Light-emitting diodes enhanced by localized surface plasmon resonance.

Gu X, Qiu T, Zhang W, Chu PK - Nanoscale Res Lett (2011)

Bottom Line: The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology.In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques.The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, Southeast University, Nanjing 211189, People's Republic of China. tqiu@seu.edu.cn.

ABSTRACT
Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

No MeSH data available.


LEE enhancement of a GaN-based LED. Schematic illustration of the structure of an electroluminescent LED in which LEE is enhanced via energy transfer.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211255&req=5

Figure 4: LEE enhancement of a GaN-based LED. Schematic illustration of the structure of an electroluminescent LED in which LEE is enhanced via energy transfer.

Mentions: In some situations, LSPR is expected to enhance the LEE rather than IQE. In this case, the energy of the generated photons is first transferred to the metallic NPs to induce LSP followed by emission of light. While IQE enhancement has been studied, only a few cases in which the LEE is enhanced by LSP have been reported. The GaN-based LED developed by Sung et al. [37] and described in Figure 4 shows an electroluminescence [EL] increase of 1.8 times at an injection current of 20 mA. As the distance between the gold NPs and the GaN multiple QW [MQW] is very large, the argument about enhancement by emitter/field interaction no longer holds, and so the enhancement can only stem from an out-coupling of the generated photons by the gold NPs.


Light-emitting diodes enhanced by localized surface plasmon resonance.

Gu X, Qiu T, Zhang W, Chu PK - Nanoscale Res Lett (2011)

LEE enhancement of a GaN-based LED. Schematic illustration of the structure of an electroluminescent LED in which LEE is enhanced via energy transfer.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211255&req=5

Figure 4: LEE enhancement of a GaN-based LED. Schematic illustration of the structure of an electroluminescent LED in which LEE is enhanced via energy transfer.
Mentions: In some situations, LSPR is expected to enhance the LEE rather than IQE. In this case, the energy of the generated photons is first transferred to the metallic NPs to induce LSP followed by emission of light. While IQE enhancement has been studied, only a few cases in which the LEE is enhanced by LSP have been reported. The GaN-based LED developed by Sung et al. [37] and described in Figure 4 shows an electroluminescence [EL] increase of 1.8 times at an injection current of 20 mA. As the distance between the gold NPs and the GaN multiple QW [MQW] is very large, the argument about enhancement by emitter/field interaction no longer holds, and so the enhancement can only stem from an out-coupling of the generated photons by the gold NPs.

Bottom Line: The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology.In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques.The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics, Southeast University, Nanjing 211189, People's Republic of China. tqiu@seu.edu.cn.

ABSTRACT
Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

No MeSH data available.