Limits...
Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice.

Yoshida T, Yoshioka Y, Fujimura M, Yamashita K, Higashisaka K, Morishita Y, Kayamuro H, Nabeshi H, Nagano K, Abe Y, Kamada H, Tsunoda S, Itoh N, Yoshikawa T, Tsutsumi Y - Nanoscale Res Lett (2011)

Bottom Line: Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles.Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo.This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan. yasuo@phs.osaka-u.ac.jp.

ABSTRACT
With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

No MeSH data available.


Related in: MedlinePlus

Plasma OVA-specific IgE Ab responses after intranasal exposure to OVA plus silica particles. (a) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus silica particles (250 μg/mouse) on days 0, 1, and 2. (b) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus the designated dose of nSP30 or nSP70 on days 0, 1, and 2. Plasma was collected on day 21 and analyzed by ELISA to assess (a) the relationship between silica particle size and OVA-specific IgE Ab responses and (b) the dose-response effect of nSP30 and nSP70 on OVA-specific IgE Ab levels. N.D., not detected. Data are presented as mean ± SEM (n = 8 to 13; *P < 0.05 vs OVA alone).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211251&req=5

Figure 1: Plasma OVA-specific IgE Ab responses after intranasal exposure to OVA plus silica particles. (a) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus silica particles (250 μg/mouse) on days 0, 1, and 2. (b) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus the designated dose of nSP30 or nSP70 on days 0, 1, and 2. Plasma was collected on day 21 and analyzed by ELISA to assess (a) the relationship between silica particle size and OVA-specific IgE Ab responses and (b) the dose-response effect of nSP30 and nSP70 on OVA-specific IgE Ab levels. N.D., not detected. Data are presented as mean ± SEM (n = 8 to 13; *P < 0.05 vs OVA alone).

Mentions: To assess the relationship between the size of silica particles and allergic immune responses, we used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1,000 nm (nSP300 or mSP1000, respectively). The mean secondary particle diameters of the silica particles measured by dynamic laser scatter analysis were 33, 79, 326, and 945 nm, respectively (data not shown). We examined the silica particles by transmission electron microscopy, and confirmed that they were well-dispersed smooth-surfaced spheres (data not shown). To investigate the potential of silica particles to enhance allergic immune responses, we examined their effect on the production of allergen-specific Abs responses in vivo. On days 0, 1, and 2, mice were intranasally exposed to OVA (10 μg/mouse) plus silica particles at concentrations of 10, 50, and 250 μg/mouse. On day 21, we collected plasma from the mice and performed an ELISA to examine anti-OVA IgE Ab responses. The levels of IgE Abs tended to be higher in mice exposed to OVA plus smaller nanosilica particles than in mice exposed to OVA plus larger silica particles (Figure 1a). In particular, the OVA-specific IgE Ab level in OVA plus nSP30-exposed mice was significantly higher than in mice exposed to OVA alone (Figure 1a). We consider that this level of IgE Ab would induce the mast cell degranulation and histamine release, which are major mechanisms underlying anaphylactic reactions in allergic diseases [16]. In addition, the OVA-specific IgE Ab response in mice exposed to OVA plus nSP30 increased in an nSP30-dose-dependent manner (Figure 1b). Taken together, these results suggest that nanosilica particles such as nSP30 are capable of inducing allergic immune responses and have the potential to cause serious allergic symptoms.


Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice.

Yoshida T, Yoshioka Y, Fujimura M, Yamashita K, Higashisaka K, Morishita Y, Kayamuro H, Nabeshi H, Nagano K, Abe Y, Kamada H, Tsunoda S, Itoh N, Yoshikawa T, Tsutsumi Y - Nanoscale Res Lett (2011)

Plasma OVA-specific IgE Ab responses after intranasal exposure to OVA plus silica particles. (a) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus silica particles (250 μg/mouse) on days 0, 1, and 2. (b) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus the designated dose of nSP30 or nSP70 on days 0, 1, and 2. Plasma was collected on day 21 and analyzed by ELISA to assess (a) the relationship between silica particle size and OVA-specific IgE Ab responses and (b) the dose-response effect of nSP30 and nSP70 on OVA-specific IgE Ab levels. N.D., not detected. Data are presented as mean ± SEM (n = 8 to 13; *P < 0.05 vs OVA alone).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211251&req=5

Figure 1: Plasma OVA-specific IgE Ab responses after intranasal exposure to OVA plus silica particles. (a) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus silica particles (250 μg/mouse) on days 0, 1, and 2. (b) BALB/c mice were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus the designated dose of nSP30 or nSP70 on days 0, 1, and 2. Plasma was collected on day 21 and analyzed by ELISA to assess (a) the relationship between silica particle size and OVA-specific IgE Ab responses and (b) the dose-response effect of nSP30 and nSP70 on OVA-specific IgE Ab levels. N.D., not detected. Data are presented as mean ± SEM (n = 8 to 13; *P < 0.05 vs OVA alone).
Mentions: To assess the relationship between the size of silica particles and allergic immune responses, we used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1,000 nm (nSP300 or mSP1000, respectively). The mean secondary particle diameters of the silica particles measured by dynamic laser scatter analysis were 33, 79, 326, and 945 nm, respectively (data not shown). We examined the silica particles by transmission electron microscopy, and confirmed that they were well-dispersed smooth-surfaced spheres (data not shown). To investigate the potential of silica particles to enhance allergic immune responses, we examined their effect on the production of allergen-specific Abs responses in vivo. On days 0, 1, and 2, mice were intranasally exposed to OVA (10 μg/mouse) plus silica particles at concentrations of 10, 50, and 250 μg/mouse. On day 21, we collected plasma from the mice and performed an ELISA to examine anti-OVA IgE Ab responses. The levels of IgE Abs tended to be higher in mice exposed to OVA plus smaller nanosilica particles than in mice exposed to OVA plus larger silica particles (Figure 1a). In particular, the OVA-specific IgE Ab level in OVA plus nSP30-exposed mice was significantly higher than in mice exposed to OVA alone (Figure 1a). We consider that this level of IgE Ab would induce the mast cell degranulation and histamine release, which are major mechanisms underlying anaphylactic reactions in allergic diseases [16]. In addition, the OVA-specific IgE Ab response in mice exposed to OVA plus nSP30 increased in an nSP30-dose-dependent manner (Figure 1b). Taken together, these results suggest that nanosilica particles such as nSP30 are capable of inducing allergic immune responses and have the potential to cause serious allergic symptoms.

Bottom Line: Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles.Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo.This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan. yasuo@phs.osaka-u.ac.jp.

ABSTRACT
With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

No MeSH data available.


Related in: MedlinePlus