Limits...
Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires.

Potié A, Baron T, Dhalluin F, Rosaz G, Salem B, Latu-Romain L, Kogelschatz M, Gentile P, Oehler F, Montès L, Kreisel J, Roussel H - Nanoscale Res Lett (2011)

Bottom Line: Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4).Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented.This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

View Article: PubMed Central - HTML - PubMed

Affiliation: LTM/CNRS-CEA-LETI, 17, rue des martyrs, 38054 Grenoble, France. alexis.potie@cea.fr.

ABSTRACT
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

No MeSH data available.


Related in: MedlinePlus

SEM images of Au-catalyzed SiGe NW grown for 40 min at various temperatures with R = 0.15. Straight NW growth with a good density occurs between 350 and 400°C. For higher temperatures, 2D growth becomes too important thus decreasing NW density. At T = 325°C, the temperature seems too low to get a satisfying density. The scale bars are 400 nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211240&req=5

Figure 1: SEM images of Au-catalyzed SiGe NW grown for 40 min at various temperatures with R = 0.15. Straight NW growth with a good density occurs between 350 and 400°C. For higher temperatures, 2D growth becomes too important thus decreasing NW density. At T = 325°C, the temperature seems too low to get a satisfying density. The scale bars are 400 nm.

Mentions: The influence of temperature has been studied for a constant R = 0.15 (PSiH4 = 55 mTorr). Figure 1 shows the SEM images of the NW grown for 40 min at temperatures varying from 325 to 450°C. As one can see, at high temperatures, the uncatalyzed growth becomes too important and inhibits the growth of NW above 400°C, whereas temperatures below 350°C lead to a very slow growth (poor density and small length). As the process window for SiGe NW seems to be shallow, the growth temperature for the rest of the study will be restricted between 350 and 400°C.


Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires.

Potié A, Baron T, Dhalluin F, Rosaz G, Salem B, Latu-Romain L, Kogelschatz M, Gentile P, Oehler F, Montès L, Kreisel J, Roussel H - Nanoscale Res Lett (2011)

SEM images of Au-catalyzed SiGe NW grown for 40 min at various temperatures with R = 0.15. Straight NW growth with a good density occurs between 350 and 400°C. For higher temperatures, 2D growth becomes too important thus decreasing NW density. At T = 325°C, the temperature seems too low to get a satisfying density. The scale bars are 400 nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211240&req=5

Figure 1: SEM images of Au-catalyzed SiGe NW grown for 40 min at various temperatures with R = 0.15. Straight NW growth with a good density occurs between 350 and 400°C. For higher temperatures, 2D growth becomes too important thus decreasing NW density. At T = 325°C, the temperature seems too low to get a satisfying density. The scale bars are 400 nm.
Mentions: The influence of temperature has been studied for a constant R = 0.15 (PSiH4 = 55 mTorr). Figure 1 shows the SEM images of the NW grown for 40 min at temperatures varying from 325 to 450°C. As one can see, at high temperatures, the uncatalyzed growth becomes too important and inhibits the growth of NW above 400°C, whereas temperatures below 350°C lead to a very slow growth (poor density and small length). As the process window for SiGe NW seems to be shallow, the growth temperature for the rest of the study will be restricted between 350 and 400°C.

Bottom Line: Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4).Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented.This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

View Article: PubMed Central - HTML - PubMed

Affiliation: LTM/CNRS-CEA-LETI, 17, rue des martyrs, 38054 Grenoble, France. alexis.potie@cea.fr.

ABSTRACT
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

No MeSH data available.


Related in: MedlinePlus