Limits...
Preparation and thermal conductivity of CuO nanofluid via a wet chemical method.

Zhu H, Han D, Meng Z, Wu D, Zhang C - Nanoscale Res Lett (2011)

Bottom Line: The results showed that different copper salts resulted in different particle morphology.Nanofluids with different microstructures could be obtained by changing the synthesis parameters.The thermal conductivities of CuO nanofluids increased with the increase of particle loading.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. htzhu1970@163.com.

ABSTRACT
In this article, a wet chemical method was developed to prepare stable CuO nanofluids. The influences of synthesis parameters, such as kinds and amounts of copper salts, reaction time, were studied. The thermal conductivities of CuO nanofluids were also investigated. The results showed that different copper salts resulted in different particle morphology. The concentration of copper acetate and reaction time affected the size and shape of clusters of primary nanoparticles. Nanofluids with different microstructures could be obtained by changing the synthesis parameters. The thermal conductivities of CuO nanofluids increased with the increase of particle loading.

No MeSH data available.


Thermal conductivity ratio as a function of CuO volume fraction at 25°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211235&req=5

Figure 6: Thermal conductivity ratio as a function of CuO volume fraction at 25°C.

Mentions: Figure 6 shows the thermal conductivity ratio of the typical sample, defined as k/k0, where k and k0 are the thermal conductivities of the nanofluids and the base media (H2O) respectively, as a function of the particle volume fraction at 25°C. The thermal conductivity of the base fluid (H2O) was measured, and it had an average value of 0.580 W·m-1·K-1. It can be seen that the thermal conductivity ratio increases as the particle volume fraction increases. This is in good agreement with some research, in which the thermal conductivity of nanofluids also increase linearly with the particle loading [28,29]. On comparing with some reported experimental results of CuO nanofluids, the current data are found to be close to Lee et al.'s data, Das et al.'s data, and Liu et al.'s data [30-32], suggesting the potential application as heat transfer fluids.


Preparation and thermal conductivity of CuO nanofluid via a wet chemical method.

Zhu H, Han D, Meng Z, Wu D, Zhang C - Nanoscale Res Lett (2011)

Thermal conductivity ratio as a function of CuO volume fraction at 25°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211235&req=5

Figure 6: Thermal conductivity ratio as a function of CuO volume fraction at 25°C.
Mentions: Figure 6 shows the thermal conductivity ratio of the typical sample, defined as k/k0, where k and k0 are the thermal conductivities of the nanofluids and the base media (H2O) respectively, as a function of the particle volume fraction at 25°C. The thermal conductivity of the base fluid (H2O) was measured, and it had an average value of 0.580 W·m-1·K-1. It can be seen that the thermal conductivity ratio increases as the particle volume fraction increases. This is in good agreement with some research, in which the thermal conductivity of nanofluids also increase linearly with the particle loading [28,29]. On comparing with some reported experimental results of CuO nanofluids, the current data are found to be close to Lee et al.'s data, Das et al.'s data, and Liu et al.'s data [30-32], suggesting the potential application as heat transfer fluids.

Bottom Line: The results showed that different copper salts resulted in different particle morphology.Nanofluids with different microstructures could be obtained by changing the synthesis parameters.The thermal conductivities of CuO nanofluids increased with the increase of particle loading.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. htzhu1970@163.com.

ABSTRACT
In this article, a wet chemical method was developed to prepare stable CuO nanofluids. The influences of synthesis parameters, such as kinds and amounts of copper salts, reaction time, were studied. The thermal conductivities of CuO nanofluids were also investigated. The results showed that different copper salts resulted in different particle morphology. The concentration of copper acetate and reaction time affected the size and shape of clusters of primary nanoparticles. Nanofluids with different microstructures could be obtained by changing the synthesis parameters. The thermal conductivities of CuO nanofluids increased with the increase of particle loading.

No MeSH data available.