Limits...
Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts.

Zeinali Heris S, Noie SH, Talaii E, Sargolzaei J - Nanoscale Res Lett (2011)

Bottom Line: In this article, for considering the presence of nanoparticl: es, the dispersion model is used.Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct.The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter.

View Article: PubMed Central - HTML - PubMed

Affiliation: Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. zeinali@ferdowsi.um.ac.ir.

ABSTRACT
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

No MeSH data available.


Related in: MedlinePlus

Effect of nanoparticle's diameter on the Nusselt number for. (a) 1% volume concentration, (b) 2% volume concentration, (c) 3% volume concentration, and (d) 4% volume concentration of Al2O3 nanofluids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211232&req=5

Figure 6: Effect of nanoparticle's diameter on the Nusselt number for. (a) 1% volume concentration, (b) 2% volume concentration, (c) 3% volume concentration, and (d) 4% volume concentration of Al2O3 nanofluids.

Mentions: Figure 6 displays the effect of nanoparticle's diameter on the Nusselt number for Al2O3 nanofluids of constant volume concentrations. It can be seen that the average Nusselt number increases with the decreasing size of nanoparticles at the same concentration, particularly at high concentrations. For example, by increasing the size of the nanoparticles from 10 to 50 nm in 0.02 concentration at Re = 400, the average Nusselt numbers decrease from 2.845 to 2.376. Also, at Reynolds number 2050 in 0.02 volume concentration, increasing the nanoparticle's size from 10 to 50 nm leads to a decrease in Nu from 5.273 to 4.406. Similar kind of enhancement in Nusselt number with smaller particle size was observed from the experiments conducted by Zeinali Heris et al. [10].


Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts.

Zeinali Heris S, Noie SH, Talaii E, Sargolzaei J - Nanoscale Res Lett (2011)

Effect of nanoparticle's diameter on the Nusselt number for. (a) 1% volume concentration, (b) 2% volume concentration, (c) 3% volume concentration, and (d) 4% volume concentration of Al2O3 nanofluids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211232&req=5

Figure 6: Effect of nanoparticle's diameter on the Nusselt number for. (a) 1% volume concentration, (b) 2% volume concentration, (c) 3% volume concentration, and (d) 4% volume concentration of Al2O3 nanofluids.
Mentions: Figure 6 displays the effect of nanoparticle's diameter on the Nusselt number for Al2O3 nanofluids of constant volume concentrations. It can be seen that the average Nusselt number increases with the decreasing size of nanoparticles at the same concentration, particularly at high concentrations. For example, by increasing the size of the nanoparticles from 10 to 50 nm in 0.02 concentration at Re = 400, the average Nusselt numbers decrease from 2.845 to 2.376. Also, at Reynolds number 2050 in 0.02 volume concentration, increasing the nanoparticle's size from 10 to 50 nm leads to a decrease in Nu from 5.273 to 4.406. Similar kind of enhancement in Nusselt number with smaller particle size was observed from the experiments conducted by Zeinali Heris et al. [10].

Bottom Line: In this article, for considering the presence of nanoparticl: es, the dispersion model is used.Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct.The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter.

View Article: PubMed Central - HTML - PubMed

Affiliation: Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. zeinali@ferdowsi.um.ac.ir.

ABSTRACT
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

No MeSH data available.


Related in: MedlinePlus