Limits...
Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material.

No MeSH data available.


Related in: MedlinePlus

Biocompatibility of Ag-NPs in Vero cells. Cytotoxic levels were determined for uncoated and polysaccharide-coated 10 and 25-nm Ag-NPs, following a 24-h exposure using a standard MTS cell viability assay. The cell viability in the treatment groups is expressed as percent control and plotted as the mean +/- standard error of the mean (SEM). (n = 8).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211222&req=5

Figure 1: Biocompatibility of Ag-NPs in Vero cells. Cytotoxic levels were determined for uncoated and polysaccharide-coated 10 and 25-nm Ag-NPs, following a 24-h exposure using a standard MTS cell viability assay. The cell viability in the treatment groups is expressed as percent control and plotted as the mean +/- standard error of the mean (SEM). (n = 8).

Mentions: After a 24-h exposure, a 25% decline in cell viability was observed in Vero cells exposed to 50 μg/ml of 10-nm uncoated Ag-NPs (Figure 1). Treatments with 10-nm uncoated Ag-NPs at 75 and 100 μg/ml resulted in a 60% reduction in cell viability (Figure 1). There was no further reduction in cell viability in the 50 μg/ml dose, but the cells treated with 75–100 μg/ml died off by day 2 (data not shown). Concentrations of uncoated 10-nm Ag-NPs lower than 50 μg/ml had little effect on Vero cell viability (Figure 1). The 10-nm PS-Ag had no significant effects on the Vero cells in the first 24 h (Figure 1), but the 75 and 100 μg/ml doses demonstrated a 25% reduction in viability after 48 h (data not shown), suggesting an instability of the coating. The concentrations of Ag-PS 10 nm at 50 μg/ml or less had no effect on cell viability at later time points (data not shown). There was little cytotoxicity observed in Vero cells treated with the uncoated or polysaccharide-coated 25-nm Ag-NPs (Figure 1).


Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro
Biocompatibility of Ag-NPs in Vero cells. Cytotoxic levels were determined for uncoated and polysaccharide-coated 10 and 25-nm Ag-NPs, following a 24-h exposure using a standard MTS cell viability assay. The cell viability in the treatment groups is expressed as percent control and plotted as the mean +/- standard error of the mean (SEM). (n = 8).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211222&req=5

Figure 1: Biocompatibility of Ag-NPs in Vero cells. Cytotoxic levels were determined for uncoated and polysaccharide-coated 10 and 25-nm Ag-NPs, following a 24-h exposure using a standard MTS cell viability assay. The cell viability in the treatment groups is expressed as percent control and plotted as the mean +/- standard error of the mean (SEM). (n = 8).
Mentions: After a 24-h exposure, a 25% decline in cell viability was observed in Vero cells exposed to 50 μg/ml of 10-nm uncoated Ag-NPs (Figure 1). Treatments with 10-nm uncoated Ag-NPs at 75 and 100 μg/ml resulted in a 60% reduction in cell viability (Figure 1). There was no further reduction in cell viability in the 50 μg/ml dose, but the cells treated with 75–100 μg/ml died off by day 2 (data not shown). Concentrations of uncoated 10-nm Ag-NPs lower than 50 μg/ml had little effect on Vero cell viability (Figure 1). The 10-nm PS-Ag had no significant effects on the Vero cells in the first 24 h (Figure 1), but the 75 and 100 μg/ml doses demonstrated a 25% reduction in viability after 48 h (data not shown), suggesting an instability of the coating. The concentrations of Ag-PS 10 nm at 50 μg/ml or less had no effect on cell viability at later time points (data not shown). There was little cytotoxicity observed in Vero cells treated with the uncoated or polysaccharide-coated 25-nm Ag-NPs (Figure 1).

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material.

No MeSH data available.


Related in: MedlinePlus